Suppr超能文献

植物响应盐胁迫的组蛋白修饰和染色质重塑。

Histone modifications and chromatin remodelling in plants in response to salt stress.

机构信息

School of Life Sciences and Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China.

出版信息

Physiol Plant. 2021 Dec;173(4):1495-1513. doi: 10.1111/ppl.13467. Epub 2021 Jun 2.

Abstract

In the face of global food security crises, it is necessary to boost agricultural production. One factor hampering the attempts to increase food production is elevated soil salinity, which can be due to salt that is naturally present in the soil or a consequence of excessive or prolonged irrigation or application of fertiliser. In response to environmental stresses, plants activate multiple molecular mechanisms, including the timely activation of stress-responsive transcriptional networks. However, in the case of salt stress, the combined effects of the initial osmotic shock and the subsequent ion-specific stress increase the complexity in the selective regulation of gene expressions involved in restoring or maintaining osmotic balance, ion homeostasis and reactive oxygen species scavenging. Histone modifications and chromatin remodelling are important epigenetic processes that regulate gene expressions by modifying the chromatin status and recruiting transcription regulators. In this review, we have specifically summarised the currently available knowledge on histone modifications and chromatin remodelling in relation to plant responses to salt stress. Current findings have revealed the functional importance of chromatin modifiers in regulating salt tolerance and identified the effector genes affected by epigenetic modifications, although counteraction between modifiers within the same family may occur. Emerging evidence has also illustrated the crosstalk between epigenetic modifications and hormone signalling pathways which involves formation of protein complexes. With an improved understanding of these processes, plant breeders will be able to develop alternative strategies using genome editing technologies for crop improvement.

摘要

面对全球粮食安全危机,必须提高农业产量。阻碍增加粮食产量的一个因素是土壤盐度升高,其可能是由于土壤中存在天然盐分,也可能是由于过度或长期灌溉或施肥造成的。为应对环境胁迫,植物会激活多种分子机制,包括及时激活应激响应转录网络。然而,在盐胁迫情况下,最初的渗透冲击和随后的离子特异性应激的综合效应增加了涉及恢复或维持渗透平衡、离子稳态和活性氧清除的基因表达的选择性调节的复杂性。组蛋白修饰和染色质重塑是重要的表观遗传过程,通过改变染色质状态和招募转录调节剂来调节基因表达。在这篇综述中,我们特别总结了目前关于组蛋白修饰和染色质重塑与植物对盐胁迫反应的相关知识。现有研究结果揭示了染色质修饰物在调节盐耐受性方面的功能重要性,并确定了受表观遗传修饰影响的效应基因,尽管同一家族中的修饰物之间可能会发生拮抗作用。新出现的证据还说明了表观遗传修饰与激素信号通路之间的串扰,其中涉及蛋白质复合物的形成。通过更好地了解这些过程,植物育种者将能够利用基因组编辑技术开发改良作物的替代策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验