Center for Opto-Electronic Materials and Devices, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea.
Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea.
Adv Mater. 2021 Jul;33(26):e2100475. doi: 10.1002/adma.202100475. Epub 2021 May 24.
Dendritic network implementable organic neurofiber transistors with enhanced memory cyclic endurance for spatiotemporal iterative learning are proposed. The architecture of the fibrous organic electrochemical transistors consisting of a double-stranded assembly of electrode microfibers and an iongel gate insulator enables the highly sensitive multiple implementation of synaptic junctions via simple physical contact of gate-electrode microfibers, similar to the dendritic connections of a biological neuron fiber. In particular, carboxylic-acid-functionalized polythiophene as a semiconductor channel material provides stable gate-field-dependent multilevel memory characteristics with long-term stability and cyclic endurance, unlike the conventional poly(alkylthiophene)-based neuromorphic electrochemical transistors, which exhibit short retention and unstable endurance. The dissociation of the carboxylic acid of the polythiophene enables reversible doping and dedoping of the polythiophene channel by effectively stabilizing the ions that penetrate the channel during potentiation and depression cycles, leading to the reliable cyclic endurance of the device. The synaptic weight of the neurofiber transistors with a dendritic network maintains the state levels stably and is independently updated with each synapse connected with the presynaptic neuron to a specific state level. Finally, the neurofiber transistor demonstrates successful speech recognition based on iterative spiking neural network learning in the time domain, showing a substantial recognition accuracy of 88.9%.
提出了具有增强的时空迭代学习记忆循环耐久性的树枝状网络可实现有机神经纤维晶体管。由电极微纤维的双链组装和离子凝胶栅绝缘体组成的纤维状有机电化学晶体管的结构通过栅极电极微纤维的简单物理接触实现了突触结的高度敏感的多次实现,类似于生物神经元纤维的树突连接。特别是,作为半导体沟道材料的羧酸官能化聚噻吩提供了稳定的栅极场依赖的多级记忆特性,具有长期稳定性和循环耐久性,而不同于传统的基于聚(烷基噻吩)的神经形态电化学晶体管,其表现出短的保持时间和不稳定的耐久性。聚噻吩的羧酸的离解通过有效稳定在增强和抑制循环期间穿透沟道的离子,使聚噻吩沟道的可逆掺杂和去掺杂成为可能,从而实现了器件的可靠循环耐久性。具有树枝状网络的神经纤维晶体管的突触权重稳定地保持状态水平,并且与连接到特定状态水平的每个突触独立更新。最后,神经纤维晶体管基于时域中的迭代尖峰神经网络学习成功地进行了语音识别,显示出 88.9%的高识别准确率。