MRC London Institute of Medical Sciences, London, UK.
Faculty of Medicine, Institute of Clinical Sciences, Imperial College London, London, UK.
Mol Syst Biol. 2021 May;17(5):e10267. doi: 10.15252/msb.202110267.
Novel invertebrate-killing compounds are required in agriculture and medicine to overcome resistance to existing treatments. Because insecticides and anthelmintics are discovered in phenotypic screens, a crucial step in the discovery process is determining the mode of action of hits. Visible whole-organism symptoms are combined with molecular and physiological data to determine mode of action. However, manual symptomology is laborious and requires symptoms that are strong enough to see by eye. Here, we use high-throughput imaging and quantitative phenotyping to measure Caenorhabditis elegans behavioral responses to compounds and train a classifier that predicts mode of action with an accuracy of 88% for a set of ten common modes of action. We also classify compounds within each mode of action to discover substructure that is not captured in broad mode-of-action labels. High-throughput imaging and automated phenotyping could therefore accelerate mode-of-action discovery in invertebrate-targeting compound development and help to refine mode-of-action categories.
新型无脊椎动物杀虫化合物在农业和医学中是必需的,以克服对现有治疗方法的抗性。由于杀虫剂和驱虫剂是在表型筛选中发现的,因此发现过程中的一个关键步骤是确定命中的作用模式。将可见的整个生物体症状与分子和生理数据相结合,以确定作用模式。然而,手动症状学是费力的,并且需要足够强的症状才能用肉眼看到。在这里,我们使用高通量成像和定量表型分析来测量秀丽隐杆线虫对化合物的行为反应,并训练一个分类器,该分类器以 88%的准确度预测了一组十个常见作用模式的作用模式。我们还对每个作用模式内的化合物进行分类,以发现宽作用模式标签中未捕获的亚结构。因此,高通量成像和自动表型分析可以加速针对无脊椎动物的靶向化合物开发中的作用模式发现,并有助于完善作用模式类别。