The Kathleen Lonsdale Institute for Human Health Research, Department of Biology, Maynooth University, Maynooth, Ireland.
Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom.
JCI Insight. 2021 Jun 22;6(12):142801. doi: 10.1172/jci.insight.142801.
Evolutionarily conserved signaling intermediate in Toll pathways (ECSIT) is a protein with roles in early development, activation of the transcription factor NF-κB, and production of mitochondrial reactive oxygen species (mROS) that facilitates clearance of intracellular bacteria like Salmonella. ECSIT is also an important assembly factor for mitochondrial complex I. Unlike the murine form of Ecsit (mEcsit), we demonstrate here that human ECSIT (hECSIT) is highly labile. To explore whether the instability of hECSIT affects functions previously ascribed to its murine counterpart, we created a potentially novel transgenic mouse in which the murine Ecsit gene is replaced by the human ECSIT gene. The humanized mouse has low levels of hECSIT protein, in keeping with its intrinsic instability. Whereas low-level expression of hECSIT was capable of fully compensating for mEcsit in its roles in early development and activation of the NF-κB pathway, macrophages from humanized mice showed impaired clearance of Salmonella that was associated with reduced production of mROS. Notably, severe cardiac hypertrophy was manifested in aging humanized mice, leading to premature death. The cellular and molecular basis of this phenotype was delineated by showing that low levels of human ECSIT protein led to a marked reduction in assembly and activity of mitochondrial complex I with impaired oxidative phosphorylation and reduced production of ATP. Cardiac tissue from humanized hECSIT mice also showed reduced mitochondrial fusion and more fission but impaired clearance of fragmented mitochondria. A cardiomyocyte-intrinsic role for Ecsit in mitochondrial function and cardioprotection is also demonstrated. We also show that cardiac fibrosis and damage in humans correlated with low expression of human ECSIT. In summary, our findings identify a role for ECSIT in cardioprotection, while generating a valuable experimental model to study mitochondrial dysfunction and cardiac pathophysiology.
Toll 途径中进化保守的信号中间体(ECSIT)是一种在早期发育、转录因子 NF-κB 的激活以及线粒体活性氧物种(mROS)的产生中发挥作用的蛋白质,有助于清除细胞内细菌,如沙门氏菌。ECSIT 也是线粒体复合物 I 的重要组装因子。与鼠形式的 Ecsit(mEcsit)不同,我们在这里证明人类 ECSIT(hECSIT)高度不稳定。为了探讨 hECSIT 的不稳定性是否影响以前归因于其鼠类对应物的功能,我们创建了一种可能的新型转基因小鼠,其中鼠 Ecsit 基因被人类 ECSIT 基因取代。人类化小鼠的 hECSIT 蛋白水平较低,与其内在不稳定性一致。虽然 hECSIT 的低水平表达能够完全补偿 mEcsit 在早期发育和 NF-κB 途径激活中的作用,但人类化小鼠的巨噬细胞清除沙门氏菌的能力受损,与 mROS 产生减少有关。值得注意的是,衰老的人类化小鼠表现出严重的心脏肥大,导致过早死亡。通过显示低水平的人类 ECSIT 蛋白导致线粒体复合物 I 的组装和活性显著降低,氧化磷酸化受损,ATP 产生减少,阐明了这种表型的细胞和分子基础。来自人类化 hECSIT 小鼠的心脏组织也显示出线粒体融合减少和裂变增加,但破碎线粒体的清除受损。还证明了 Ecsit 在心肌细胞中线粒体功能和心脏保护中的内在作用。我们还表明,人类心脏组织中的纤维化和损伤与人类 ECSIT 的低表达相关。总之,我们的发现确定了 ECSIT 在心脏保护中的作用,同时生成了一个有价值的实验模型来研究线粒体功能障碍和心脏病理生理学。