Suppr超能文献

一种用于实时检测颅内 EEG 中高频振荡 (HFO) 的电子神经形态系统。

An electronic neuromorphic system for real-time detection of high frequency oscillations (HFO) in intracranial EEG.

机构信息

Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich, Switzerland.

Department of Neurosurgery, University Hospital Zurich, University of Zurich, Zurich, Switzerland.

出版信息

Nat Commun. 2021 May 25;12(1):3095. doi: 10.1038/s41467-021-23342-2.

Abstract

The analysis of biomedical signals for clinical studies and therapeutic applications can benefit from embedded devices that can process these signals locally and in real-time. An example is the analysis of intracranial EEG (iEEG) from epilepsy patients for the detection of High Frequency Oscillations (HFO), which are a biomarker for epileptogenic brain tissue. Mixed-signal neuromorphic circuits offer the possibility of building compact and low-power neural network processing systems that can analyze data on-line in real-time. Here we present a neuromorphic system that combines a neural recording headstage with a spiking neural network (SNN) processing core on the same die for processing iEEG, and show how it can reliably detect HFO, thereby achieving state-of-the-art accuracy, sensitivity, and specificity. This is a first feasibility study towards identifying relevant features in iEEG in real-time using mixed-signal neuromorphic computing technologies.

摘要

生物医学信号的分析对于临床研究和治疗应用有很大的帮助,而这可以通过能实时、就地处理这些信号的嵌入式设备来实现。例如,对癫痫患者颅内脑电图(iEEG)的分析可用于检测高频振荡(HFO),HFO 是致痫性脑组织的生物标志物。混合信号神经形态电路提供了构建紧凑、低功耗神经网络处理系统的可能性,该系统可实时在线分析数据。在这里,我们提出了一种神经形态系统,该系统将神经记录前端与尖峰神经网络(SNN)处理核心集成在同一芯片上,用于处理 iEEG,并展示了它如何可靠地检测 HFO,从而实现了最先进的准确性、灵敏度和特异性。这是使用混合信号神经形态计算技术实时识别 iEEG 中相关特征的首次可行性研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c4bc/8149394/00c0bca352a3/41467_2021_23342_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验