Institute of Neuroinformatics, University of Zurich and ETH Zurich, 8057, Zurich, Switzerland.
Department of Neurosurgery, University Hospital Zurich, University of Zurich, 8091, Zurich, Switzerland.
Sci Rep. 2021 Mar 24;11(1):6719. doi: 10.1038/s41598-021-85827-w.
To achieve seizure freedom, epilepsy surgery requires the complete resection of the epileptogenic brain tissue. In intraoperative electrocorticography (ECoG) recordings, high frequency oscillations (HFOs) generated by epileptogenic tissue can be used to tailor the resection margin. However, automatic detection of HFOs in real-time remains an open challenge. Here we present a spiking neural network (SNN) for automatic HFO detection that is optimally suited for neuromorphic hardware implementation. We trained the SNN to detect HFO signals measured from intraoperative ECoG on-line, using an independently labeled dataset (58 min, 16 recordings). We targeted the detection of HFOs in the fast ripple frequency range (250-500 Hz) and compared the network results with the labeled HFO data. We endowed the SNN with a novel artifact rejection mechanism to suppress sharp transients and demonstrate its effectiveness on the ECoG dataset. The HFO rates (median 6.6 HFO/min in pre-resection recordings) detected by this SNN are comparable to those published in the dataset (Spearman's [Formula: see text] = 0.81). The postsurgical seizure outcome was "predicted" with 100% (CI [63 100%]) accuracy for all 8 patients. These results provide a further step towards the construction of a real-time portable battery-operated HFO detection system that can be used during epilepsy surgery to guide the resection of the epileptogenic zone.
为了实现无癫痫发作,癫痫手术需要完全切除致痫性脑组织。在术中皮层脑电图(ECoG)记录中,由致痫性组织产生的高频振荡(HFOs)可用于定制切除边界。然而,实时自动检测 HFO 仍然是一个开放性挑战。在这里,我们提出了一种用于自动 HFO 检测的尖峰神经网络(SNN),它最适合神经形态硬件实现。我们使用独立标记的数据集(58 分钟,16 个记录)对 SNN 进行了训练,以在线检测术中 ECoG 测量的 HFO 信号。我们的目标是检测快波频率范围内的 HFO(250-500 Hz),并将网络结果与标记的 HFO 数据进行比较。我们为 SNN 配备了一种新颖的伪影抑制机制,以抑制锐变瞬态,并在 ECoG 数据集上证明其有效性。该 SNN 检测到的 HFO 率(中位数为术前记录中的 6.6 HFO/min)与数据集(斯皮尔曼 [公式:见文本] = 0.81)中公布的 HFO 率相当。对于所有 8 名患者,该 SNN 以 100%(CI [63 100%])的准确率“预测”了术后癫痫发作的结果。这些结果为构建实时便携式电池供电的 HFO 检测系统提供了进一步的步骤,该系统可用于癫痫手术期间指导致痫区的切除。
Front Neurosci. 2022-6-2
Biomimetics (Basel). 2025-8-7
Npj Unconv Comput. 2025
Front Netw Physiol. 2024-11-28
J Neurol Surg A Cent Eur Neurosurg. 2024-5
Front Neurosci. 2022-6-2
Curr Neuropharmacol. 2022-8-3
J Neurosurg Pediatr. 2020-7-31
Nat Methods. 2020-2-3
Nature. 2019-11-27
Clin Neurophysiol. 2019-7-23