文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于检测术中 ECoG 中高频振荡 (HFO) 的尖峰神经网络 (SNN)。

A spiking neural network (SNN) for detecting high frequency oscillations (HFOs) in the intraoperative ECoG.

机构信息

Institute of Neuroinformatics, University of Zurich and ETH Zurich, 8057, Zurich, Switzerland.

Department of Neurosurgery, University Hospital Zurich, University of Zurich, 8091, Zurich, Switzerland.

出版信息

Sci Rep. 2021 Mar 24;11(1):6719. doi: 10.1038/s41598-021-85827-w.


DOI:10.1038/s41598-021-85827-w
PMID:33762590
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7990937/
Abstract

To achieve seizure freedom, epilepsy surgery requires the complete resection of the epileptogenic brain tissue. In intraoperative electrocorticography (ECoG) recordings, high frequency oscillations (HFOs) generated by epileptogenic tissue can be used to tailor the resection margin. However, automatic detection of HFOs in real-time remains an open challenge. Here we present a spiking neural network (SNN) for automatic HFO detection that is optimally suited for neuromorphic hardware implementation. We trained the SNN to detect HFO signals measured from intraoperative ECoG on-line, using an independently labeled dataset (58 min, 16 recordings). We targeted the detection of HFOs in the fast ripple frequency range (250-500 Hz) and compared the network results with the labeled HFO data. We endowed the SNN with a novel artifact rejection mechanism to suppress sharp transients and demonstrate its effectiveness on the ECoG dataset. The HFO rates (median 6.6 HFO/min in pre-resection recordings) detected by this SNN are comparable to those published in the dataset (Spearman's [Formula: see text] = 0.81). The postsurgical seizure outcome was "predicted" with 100% (CI [63 100%]) accuracy for all 8 patients. These results provide a further step towards the construction of a real-time portable battery-operated HFO detection system that can be used during epilepsy surgery to guide the resection of the epileptogenic zone.

摘要

为了实现无癫痫发作,癫痫手术需要完全切除致痫性脑组织。在术中皮层脑电图(ECoG)记录中,由致痫性组织产生的高频振荡(HFOs)可用于定制切除边界。然而,实时自动检测 HFO 仍然是一个开放性挑战。在这里,我们提出了一种用于自动 HFO 检测的尖峰神经网络(SNN),它最适合神经形态硬件实现。我们使用独立标记的数据集(58 分钟,16 个记录)对 SNN 进行了训练,以在线检测术中 ECoG 测量的 HFO 信号。我们的目标是检测快波频率范围内的 HFO(250-500 Hz),并将网络结果与标记的 HFO 数据进行比较。我们为 SNN 配备了一种新颖的伪影抑制机制,以抑制锐变瞬态,并在 ECoG 数据集上证明其有效性。该 SNN 检测到的 HFO 率(中位数为术前记录中的 6.6 HFO/min)与数据集(斯皮尔曼 [公式:见文本] = 0.81)中公布的 HFO 率相当。对于所有 8 名患者,该 SNN 以 100%(CI [63 100%])的准确率“预测”了术后癫痫发作的结果。这些结果为构建实时便携式电池供电的 HFO 检测系统提供了进一步的步骤,该系统可用于癫痫手术期间指导致痫区的切除。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b944/7990937/982dda62ad29/41598_2021_85827_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b944/7990937/b8d47ee32d2b/41598_2021_85827_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b944/7990937/5071debe2b22/41598_2021_85827_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b944/7990937/982dda62ad29/41598_2021_85827_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b944/7990937/b8d47ee32d2b/41598_2021_85827_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b944/7990937/5071debe2b22/41598_2021_85827_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b944/7990937/982dda62ad29/41598_2021_85827_Fig3_HTML.jpg

相似文献

[1]
A spiking neural network (SNN) for detecting high frequency oscillations (HFOs) in the intraoperative ECoG.

Sci Rep. 2021-3-24

[2]
Robust compression and detection of epileptiform patterns in ECoG using a real-time spiking neural network hardware framework.

Nat Commun. 2024-4-16

[3]
Flexible, high-resolution cortical arrays with large coverage capture microscale high-frequency oscillations in patients with epilepsy.

Epilepsia. 2023-7

[4]
Visually validated semi-automatic high-frequency oscillation detection aides the delineation of epileptogenic regions during intra-operative electrocorticography.

Clin Neurophysiol. 2018-7-20

[5]
Intraoperative electrocorticography using high-frequency oscillations or spikes to tailor epilepsy surgery in the Netherlands (the HFO trial): a randomised, single-blind, adaptive non-inferiority trial.

Lancet Neurol. 2022-11

[6]
High frequency oscillations in the intra-operative ECoG to guide epilepsy surgery ("The HFO Trial"): study protocol for a randomized controlled trial.

Trials. 2015-9-23

[7]
Protocol for multicentre comparison of interictal high-frequency oscillations as a predictor of seizure freedom.

Brain Commun. 2022-6-9

[8]
Resection of individually identified high-rate high-frequency oscillations region is associated with favorable outcome in neocortical epilepsy.

Epilepsia. 2014-9-29

[9]
Automatic Detection of High-Frequency Oscillations With Neuromorphic Spiking Neural Networks.

Front Neurosci. 2022-6-2

[10]
A neuromorphic spiking neural network detects epileptic high frequency oscillations in the scalp EEG.

Sci Rep. 2022-2-2

引用本文的文献

[1]
NEuroMOrphic Neural-Response Decoding System for Adaptive and Personalized Neuro-Prosthetics' Control.

Biomimetics (Basel). 2025-8-7

[2]
A neuromorphic multi-scale approach for real-time heart rate and state detection.

Npj Unconv Comput. 2025

[3]
A tunable multi-timescale Indium-Gallium-Zinc-Oxide thin-film transistor neuron towards hybrid solutions for spiking neuromorphic applications.

Commun Eng. 2024-7-23

[4]
Networks through the lens of high-frequency oscillations.

Front Netw Physiol. 2024-11-28

[5]
Robust compression and detection of epileptiform patterns in ECoG using a real-time spiking neural network hardware framework.

Nat Commun. 2024-4-16

[6]
Association between Removal of High-Frequency Oscillations and the Effect of Epilepsy Surgery: A Meta-Analysis.

J Neurol Surg A Cent Eur Neurosurg. 2024-5

[7]
Suppressive effects of a transient receptor potential melastatin 8 (TRPM8) agonist on hyperthermia-induced febrile seizures in infant mice.

Front Pharmacol. 2023-3-9

[8]
Automatic Detection of High-Frequency Oscillations With Neuromorphic Spiking Neural Networks.

Front Neurosci. 2022-6-2

[9]
A neuromorphic spiking neural network detects epileptic high frequency oscillations in the scalp EEG.

Sci Rep. 2022-2-2

[10]
High-Frequency Oscillations and Epileptogenic Network.

Curr Neuropharmacol. 2022-8-3

本文引用的文献

[1]
Blinded study: prospectively defined high-frequency oscillations predict seizure outcome in individual patients.

Brain Commun. 2021-9-2

[2]
An electronic neuromorphic system for real-time detection of high frequency oscillations (HFO) in intracranial EEG.

Nat Commun. 2021-5-25

[3]
High-Frequency Oscillations in Epilepsy: What Have We Learned and What Needs to be Addressed.

Neurology. 2021-3-2

[4]
Developing Collaborative Platforms to Advance Neurotechnology and Its Translation.

Neuron. 2020-10-28

[5]
The value of intra-operative electrographic biomarkers for tailoring during epilepsy surgery: from group-level to patient-level analysis.

Sci Rep. 2020-9-4

[6]
The clinical utility of intraoperative electrocorticography in pediatric epilepsy surgical strategy and planning.

J Neurosurg Pediatr. 2020-7-31

[7]
The resolution revolution: Comparing spikes and high frequency oscillations in high-density and standard intra-operative electrocorticography of the same patient.

Clin Neurophysiol. 2020-5

[8]
SciPy 1.0: fundamental algorithms for scientific computing in Python.

Nat Methods. 2020-2-3

[9]
Towards spike-based machine intelligence with neuromorphic computing.

Nature. 2019-11-27

[10]
High-density ECoG improves the detection of high frequency oscillations that predict seizure outcome.

Clin Neurophysiol. 2019-7-23

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索