Ge Junyu, Ding Bin, Hou Shuai, Luo Manlin, Nam Donguk, Duan Hongwei, Gao Huajian, Lam Yee Cheong, Li Hong
School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Singapore.
Institute of Solid Mechanics, Beihang University, Beijing, PR China.
Nat Commun. 2021 May 25;12(1):3146. doi: 10.1038/s41467-021-23427-y.
Despite its advantages of scalable process and cost-effectiveness, nanoimprinting faces challenges with imprinting hard materials (e.g., crystalline metals) at low/room temperatures, and with fabricating complex nanostructures rapidly (e.g., heterojunctions of metal and oxide). Herein, we report a room temperature ultrasonic nanoimprinting technique (named nanojackhammer) to address these challenges. Nanojackhammer capitalizes on the concentration of ultrasonic energy flow at nanoscale to shape bulk materials into nanostructures. Working at room temperature, nanojackhammer allows rapid fabrication of complex multi-compositional nanostructures made of virtually all solid materials regardless of their ductility, hardness, reactivity and melting points. Atomistic simulations reveal a unique alternating dislocation generation and recovery mechanism that significantly reduces the imprinting force under ultrasonic cyclic loading. As a proof-of-concept, a metal-oxide-metal plasmonic nanostructure with built-in nanogap is rapidly fabricated and employed for biosensing. As a fast, scalable, and cost-effective nanotechnology, nanojackhammer will enable various unique applications of complex nanostructures in optoelectronics, biosensing, catalysis and beyond.
尽管纳米压印具有可扩展工艺和成本效益的优点,但在低温/室温下对硬质材料(如晶体金属)进行压印以及快速制造复杂纳米结构(如金属与氧化物的异质结)方面仍面临挑战。在此,我们报道了一种室温超声纳米压印技术(名为纳米手提钻)来应对这些挑战。纳米手提钻利用纳米级超声能量流的集中将块状材料加工成纳米结构。在室温下工作,纳米手提钻能够快速制造由几乎所有固体材料制成的复杂多组分纳米结构,而不论其延展性、硬度、反应性和熔点如何。原子模拟揭示了一种独特的交替位错产生和恢复机制,该机制在超声循环加载下显著降低了压印力。作为概念验证,一种具有内置纳米间隙的金属 - 氧化物 - 金属等离子体纳米结构被快速制造出来并用于生物传感。作为一种快速、可扩展且具有成本效益的纳米技术,纳米手提钻将使复杂纳米结构在光电子学、生物传感、催化等领域实现各种独特应用。