Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan, Hubei 430072, China.
Nat Commun. 2017 Mar 28;8:14910. doi: 10.1038/ncomms14910.
Controlled fabrication of metallic nanostructures plays a central role in much of modern science and technology, because changing the dimensions of a nanocrystal enables tailoring of its mechanical, electronic, optical, catalytic and antibacterial properties. Here we show direct superplastic nanoimprinting (SPNI) of crystalline metals well below their melting temperatures, generating ordered nanowire arrays with aspect ratios up to ∼2,000 and imprinting features as small as 8 nm. Surface-enhanced Raman scattering (SERS) spectra reveal strongly enhanced electromagnetic signals from the prepared nanorod arrays with sizes up to ∼100 nm, which indicates that our technique can provide an ideal way to fabricate robust SERS substrates. SPNI, as a one-step, controlled and reproducible nanofabrication method, could facilitate the applications of metal nanostructures in bio-sensing, diagnostic imaging, catalysis, food industry and environmental conservation.
控制金属纳米结构的制造在现代科学技术中起着核心作用,因为改变纳米晶体的尺寸可以调整其机械、电子、光学、催化和抗菌性能。在这里,我们展示了低于金属熔点的晶体金属的直接超塑性纳米压印(SPNI),生成了具有高达约 2000 的纵横比的有序纳米线阵列,并且压印特征小至 8nm。表面增强拉曼散射(SERS)光谱揭示了从尺寸高达约 100nm 的制备的纳米棒阵列中强烈增强的电磁信号,这表明我们的技术可以为制造坚固的 SERS 基底提供一种理想的方法。SPNI 作为一种一步法、可控和可重复的纳米制造方法,可以促进金属纳米结构在生物传感、诊断成像、催化、食品工业和环境保护中的应用。