Suppr超能文献

基于光的方法预测睡眠-觉醒时相延迟障碍中的昼夜节律相位。

Light-based methods for predicting circadian phase in delayed sleep-wake phase disorder.

机构信息

Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, 18 Innovation Walk, Clayton, VIC, 3800, Australia.

Cooperative Research Centre for Alertness, Safety and Productivity, Clayton, VIC, Australia.

出版信息

Sci Rep. 2021 May 25;11(1):10878. doi: 10.1038/s41598-021-89924-8.

Abstract

Methods for predicting circadian phase have been developed for healthy individuals. It is unknown whether these methods generalize to clinical populations, such as delayed sleep-wake phase disorder (DSWPD), where circadian timing is associated with functional outcomes. This study evaluated two methods for predicting dim light melatonin onset (DLMO) in 154 DSWPD patients using ~ 7 days of sleep-wake and light data: a dynamic model and a statistical model. The dynamic model has been validated in healthy individuals under both laboratory and field conditions. The statistical model was developed for this dataset and used a multiple linear regression of light exposure during phase delay/advance portions of the phase response curve, as well as sleep timing and demographic variables. Both models performed comparably well in predicting DLMO. The dynamic model predicted DLMO with root mean square error of 68 min, with predictions accurate to within ± 1 h in 58% of participants and ± 2 h in 95%. The statistical model predicted DLMO with root mean square error of 57 min, with predictions accurate to within ± 1 h in 75% of participants and ± 2 h in 96%. We conclude that circadian phase prediction from light data is a viable technique for improving screening, diagnosis, and treatment of DSWPD.

摘要

已经开发出了用于预测健康个体生物钟相位的方法。但这些方法是否适用于临床人群(如睡眠时相延迟障碍,即生物钟与功能结果相关)尚不清楚。本研究使用大约 7 天的睡眠-觉醒和光照数据,评估了两种用于预测 154 名睡眠时相延迟障碍患者褪黑素分泌时间(DLMO)的方法:动态模型和统计模型。动态模型已经在实验室和野外环境下的健康个体中得到了验证。统计模型是为该数据集开发的,它使用了相位反应曲线的相位延迟/提前部分的光照暴露、睡眠时间和人口统计学变量的多元线性回归。这两种模型在预测 DLMO 方面的表现相当。动态模型预测 DLMO 的均方根误差为 68 分钟,在 58%的参与者中,预测值的准确性在±1 小时内,在 95%的参与者中,预测值的准确性在±2 小时内。统计模型预测 DLMO 的均方根误差为 57 分钟,在 75%的参与者中,预测值的准确性在±1 小时内,在 96%的参与者中,预测值的准确性在±2 小时内。我们得出结论,从光照数据预测生物钟相位是一种可行的技术,可以改善睡眠时相延迟障碍的筛查、诊断和治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f86/8149449/7c62cf5d22c9/41598_2021_89924_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验