Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong, 510632, P. R. China.
Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, P. R. China.
Angew Chem Int Ed Engl. 2021 Aug 9;60(33):18247-18255. doi: 10.1002/anie.202105756. Epub 2021 Jul 5.
Dendrite growth and by-products in Zn metal aqueous batteries have impeded their development as promising energy storage devices. We utilize a low-cost additive, glucose, to modulate the typical ZnSO electrolyte system for improving reversible plating/stripping on Zn anode for high-performance Zn ion batteries (ZIBs). Combing experimental characterizations and theoretical calculations, we show that the glucose in ZnSO aqueous environment can simultaneously modulate solvation structure of Zn and Zn anode-electrolyte interface. The electrolyte engineering can alternate one H O molecule from the primary Zn -6H O solvation shell and restraining side reactions due to the decomposition of active water. Concomitantly, glucose molecules are inclined to absorb on the surface of Zn anode, suppressing the random growth of Zn dendrite. As a proof of concept, a symmetric cell and Zn-MnO full cell with glucose electrolyte achieve boosted stability than that with pure ZnSO electrolyte.
树枝状生长和副产物在 Zn 金属水系电池中阻碍了它们作为有前途的储能设备的发展。我们利用一种低成本添加剂葡萄糖来调节典型的 ZnSO 电解质体系,以提高 Zn 阳极在高性能 Zn 离子电池 (ZIBs) 中的可逆电镀/剥离性能。通过实验表征和理论计算相结合,我们表明葡萄糖在 ZnSO 水溶液环境中可以同时调节 Zn 的溶剂化结构和 Zn 阳极-电解质界面。电解质工程可以从原始 Zn-6H2O 溶剂化壳中替代一个 H2O 分子,并抑制由于活性水分解而引起的副反应。同时,葡萄糖分子倾向于吸附在 Zn 阳极表面,抑制 Zn 枝晶的随机生长。作为概念验证,具有葡萄糖电解质的对称电池和 Zn-MnO 全电池比具有纯 ZnSO 电解质的电池具有更高的稳定性。