Suppr超能文献

迈向新一代学习型机器人操作。

Toward next-generation learned robot manipulation.

作者信息

Cui Jinda, Trinkle Jeff

机构信息

Department of Computer Science and Engineering, Lehigh University, Bethlehem, PA 18015, USA.

出版信息

Sci Robot. 2021 May 26;6(54). doi: 10.1126/scirobotics.abd9461.

Abstract

The ever-changing nature of human environments presents great challenges to robot manipulation. Objects that robots must manipulate vary in shape, weight, and configuration. Important properties of the robot, such as surface friction and motor torque constants, also vary over time. Before robot manipulators can work gracefully in homes and businesses, they must be adaptive to such variations. This survey summarizes types of variations that robots may encounter in human environments and categorizes, compares, and contrasts the ways in which learning has been applied to manipulation problems through the lens of adaptability. Promising avenues for future research are proposed at the end.

摘要

人类环境的不断变化给机器人操作带来了巨大挑战。机器人必须操作的物体在形状、重量和配置方面各不相同。机器人的重要属性,如表面摩擦力和电机扭矩常数,也会随时间变化。在机器人操纵器能够在家庭和企业中顺畅工作之前,它们必须适应这些变化。本综述总结了机器人在人类环境中可能遇到的变化类型,并从适应性的角度对将学习应用于操纵问题的方式进行了分类、比较和对比。最后提出了未来研究的有前景的方向。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验