Suppr超能文献

从互联网搜索中明显的认知特征检测即将发生的中风:档案数据分析。

Detecting Impending Stroke From Cognitive Traits Evident in Internet Searches: Analysis of Archival Data.

机构信息

Institute of Endocrinology, Metabolism and Hypertension, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.

Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.

出版信息

J Med Internet Res. 2021 May 28;23(5):e27084. doi: 10.2196/27084.

Abstract

BACKGROUND

Cerebrovascular disease is a leading cause of mortality and disability. Common risk assessment tools for stroke are based on the Framingham equation, which relies on traditional cardiovascular risk factors to predict an acute event in the near decade. However, no tools are currently available to predict a near/impending stroke, which might alert patients at risk to seek immediate preventive action (eg, anticoagulants for atrial fibrillation, control of hypertension).

OBJECTIVE

Here, we propose that an algorithm based on internet search queries can identify people at increased risk for a near stroke event.

METHODS

We analyzed queries submitted to the Bing search engine by 285 people who self-identified as having undergone a stroke event and 1195 controls with regard to attributes previously shown to reflect cognitive function. Controls included random people 60 years and above, or those of similar age who queried for one of nine control conditions.

RESULTS

The model performed well against all comparator groups with an area under the receiver operating characteristic curve of 0.985 or higher and a true positive rate (at a 1% false-positive rate) above 80% for separating patients from each of the controls. The predictive power rose as the stroke date approached and if data were acquired beginning 120 days prior to the event. Good prediction accuracy was obtained for a prospective cohort of users collected 1 year later. The most predictive attributes of the model were associated with cognitive function, including the use of common queries, repetition of queries, appearance of spelling mistakes, and number of queries per session.

CONCLUSIONS

The proposed algorithm offers a screening test for a near stroke event. After clinical validation, this algorithm may enable the administration of rapid preventive intervention. Moreover, it could be applied inexpensively, continuously, and on a large scale with the aim of reducing stroke events.

摘要

背景

脑血管疾病是导致死亡和残疾的主要原因。常见的中风风险评估工具基于弗雷明汉方程,该方程依赖于传统的心血管危险因素来预测近十年内的急性事件。然而,目前尚无工具可预测即将发生的中风,这可能会提醒有风险的患者立即采取预防措施(例如,房颤患者使用抗凝剂,控制高血压)。

目的

本文提出一种基于互联网搜索查询的算法,可以识别出即将发生中风事件的高风险人群。

方法

我们分析了 285 名自认为经历过中风事件的患者和 1195 名对照者向必应搜索引擎提交的查询,这些对照者的属性与之前显示反映认知功能的属性有关。对照组包括 60 岁及以上的随机人群,或年龄相近、因以下 9 种对照条件之一而查询的人群。

结果

该模型在所有对照组中的表现都很好,其受试者工作特征曲线下面积为 0.985 或更高,在区分患者与对照组时,真阳性率(在 1%假阳性率下)高于 80%。随着中风日期的临近,预测能力会提高,如果从事件发生前 120 天开始获取数据。在 1 年后收集的前瞻性用户队列中获得了良好的预测准确性。该模型最具预测性的属性与认知功能有关,包括常用查询的使用、查询的重复、拼写错误的出现以及每次会话的查询次数。

结论

该算法提供了一种即将发生中风事件的筛查测试。经过临床验证后,该算法可能会实现快速预防性干预。此外,该算法可以廉价、持续、大规模地应用,以减少中风事件的发生。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/96f3/8196360/2addea52584c/jmir_v23i5e27084_fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验