Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Palliative and Advanced Illness Research (PAIR) Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Leonard Davis Institute for Health Economics, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Department of Biostatistics, Epidemiology, & Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
J Card Fail. 2021 Sep;27(9):965-973. doi: 10.1016/j.cardfail.2021.04.021. Epub 2021 May 26.
Socioeconomic data may improve predictions of clinical events. However, owing to structural racism, algorithms may not perform equitably across racial subgroups. Therefore, we sought to compare the predictive performance overall, and by racial subgroup, of commonly used predictor variables for heart failure readmission with and without the area deprivation index (ADI), a neighborhood-level socioeconomic measure.
We conducted a retrospective cohort study of 1316 Philadelphia residents discharged with a primary diagnosis of congestive heart failure from the University of Pennsylvania Health System between April 1, 2015, and March 31, 2017. We trained a regression model to predict the probability of a 30-day readmission using clinical and demographic variables. A second model also included the ADI as a predictor variable. We measured predictive performance with the Brier Score (BS) in a held-out test set. The baseline model had moderate performance overall (BS 0.13, 95% CI 0.13-0.14), and among White (BS 0.12, 95% CI 0.12-0.13) and non-White (BS 0.13, 95% CI 0.13-0.14) patients. Neither performance nor algorithmic equity were significantly changed with the addition of the ADI.
The inclusion of neighborhood-level data may not reliably improve performance or algorithmic equity.
社会经济数据可能会提高对临床事件的预测能力。然而,由于结构性种族主义的存在,算法在不同种族亚组之间的表现可能并不公平。因此,我们试图比较在不使用和使用邻里社会经济衡量标准——区域贫困指数(ADI)的情况下,常用于心力衰竭再入院预测的常用预测变量的整体预测性能和按种族亚组的预测性能。
我们对 2015 年 4 月 1 日至 2017 年 3 月 31 日期间从宾夕法尼亚大学卫生系统出院的 1316 名费城居民进行了一项回顾性队列研究,他们的主要诊断为充血性心力衰竭。我们使用临床和人口统计学变量训练了一个回归模型来预测 30 天内再入院的概率。第二个模型还将 ADI 作为预测变量。我们在保留的测试集中使用 Brier 分数(BS)来衡量预测性能。基线模型的整体性能中等(BS 0.13,95%CI 0.13-0.14),白人患者(BS 0.12,95%CI 0.12-0.13)和非白人患者(BS 0.13,95%CI 0.13-0.14)中也是如此。加入 ADI 后,无论是性能还是算法公平性都没有明显变化。
纳入邻里数据可能无法可靠地提高性能或算法公平性。