Rouhi Rahimeh, Clausel Marianne, Oster Julien, Lauer Fabien
Université de Lorraine, CNRS, LORIA, Nancy, France.
Université de Lorraine, CNRS, IECL, Nancy, France.
Front Physiol. 2021 May 13;12:657304. doi: 10.3389/fphys.2021.657304. eCollection 2021.
Atrial Fibrillation (AF) is the most common type of cardiac arrhythmia. Early diagnosis of AF helps to improve therapy and prognosis. Machine Learning (ML) has been successfully applied to improve the effectiveness of Computer-Aided Diagnosis (CADx) systems for AF detection. Presenting an explanation for the decision made by an ML model is considerable from the cardiologists' point of view, which decreases the complexity of the ML model and can provide tangible information in their diagnosis. In this paper, a range of explanation techniques is applied to hand-crafted features based ML models for heart rhythm classification. We validate the impact of the techniques by applying feature selection and classification to the 2017 CinC/PhysioNet challenge dataset. The results show the effectiveness and efficiency of SHapley Additive exPlanations (SHAP) technique along with Random Forest (RF) for the classification of the Electrocardiogram (ECG) signals for AF detection with a mean F-score of 0.746 compared to 0.706 for a technique based on the same features based on a cascaded SVM approach. The study also highlights how this interpretable hand-crafted feature-based model can provide cardiologists with a more compact set of features and tangible information in their diagnosis.
心房颤动(AF)是最常见的心律失常类型。AF的早期诊断有助于改善治疗效果和预后。机器学习(ML)已成功应用于提高用于AF检测的计算机辅助诊断(CADx)系统的有效性。从心脏病专家的角度来看,为ML模型做出的决策提供解释很重要,这降低了ML模型的复杂性,并能在他们的诊断中提供切实有用的信息。在本文中,一系列解释技术被应用于基于手工特征的ML模型进行心律分类。我们通过对2017年CinC/PhysioNet挑战赛数据集进行特征选择和分类来验证这些技术的影响。结果表明,与基于级联支持向量机(SVM)方法的相同特征的技术相比,SHapley加法解释(SHAP)技术与随机森林(RF)相结合在用于AF检测的心电图(ECG)信号分类方面具有有效性和高效性,平均F值为0.746,而基于相同特征的基于级联SVM方法的技术的平均F值为0.706。该研究还强调了这种基于可解释手工特征的模型如何能够在心脏病专家的诊断中为他们提供一组更紧凑的特征和切实有用的信息。