Vazquez-Carrasquer Victor, Laperche Anne, Bissuel-Bélaygue Christine, Chelle Michaël, Richard-Molard Céline
Unité Mixte de Recherche ECOSYS, INRAE, AgroParisTech, Université Paris-Saclay, Thiverval-Grignon, France.
IGEPP, INRAE, Institut Agro, Univ Rennes, Le Rheu, France.
Front Plant Sci. 2021 May 13;12:641459. doi: 10.3389/fpls.2021.641459. eCollection 2021.
Maintaining seed yield under low N inputs is a major issue for breeding, which requires thoroughly exploiting the genetic diversity of processes related to Nitrogen Use Efficiency (NUE). However, dynamic analysis of processes underlying genotypic variations in NUE in response to N availability from sowing to harvest are scarce, particularly at the whole-plant scale. This study aimed to dynamically decipher the contributions of Nitrogen Uptake Efficiency (NUpE) and Nitrogen Utilization Efficiency (NUtE) to NUE and to identify traits underlying NUpE genetic variability throughout the growth cycle of rapeseed. Three experiments were conducted under field-like conditions to evaluate seven genotypes under two N conditions. We developed NUE_DM (ratio of total plant biomass to the amount of N available) as a new proxy of NUE at harvest, valid to discriminate genotypes from the end of inflorescence emergence, and N conditions as early as the beginning of stem elongation. During autumn growth, NUpE explained up to 100% of variations in NUE_DM, validating the major role of NUpE in NUE shaping. During this period, under low N conditions, up to 53% of the plant nitrogen was absorbed and NUpE genetic variability resulted not from differences in Specific N Uptake but in fine-root growth. NUtE mainly contributed to NUE_DM genotypic variation during the reproductive phase under high-N conditions, but NUpE contribution still accounted for 50-75% after flowering. Our study highlights for the first time NUpE and fine-root growth as important processes to optimize NUE, which opens new prospects for breeding.
在低氮投入条件下维持种子产量是育种中的一个主要问题,这需要充分挖掘与氮素利用效率(NUE)相关过程的遗传多样性。然而,关于从播种到收获期间氮素供应变化时NUE基因型变异的潜在过程的动态分析很少,尤其是在全株尺度上。本研究旨在动态解析氮素吸收效率(NUpE)和氮素利用效率(NUtE)对NUE的贡献,并确定油菜整个生长周期中NUpE遗传变异的潜在性状。在类似田间的条件下进行了三个实验,以评估两种氮条件下的七个基因型。我们开发了NUE_DM(总植物生物量与有效氮量的比值)作为收获时NUE的新指标,该指标从花序出现末期开始就能有效区分基因型,从茎伸长初期就能有效区分氮条件。在秋季生长期间,NUpE解释了NUE_DM高达100%的变异,证实了NUpE在塑造NUE中的主要作用。在此期间,在低氮条件下,高达53%的植物氮被吸收,NUpE的遗传变异不是源于特定氮吸收的差异,而是源于细根生长。在高氮条件下的生殖阶段,NUtE主要促成了NUE_DM的基因型变异,但开花后NUpE的贡献仍占50 - 75%。我们的研究首次强调了NUpE和细根生长是优化NUE的重要过程,这为育种开辟了新的前景。