Department of Breast Surgery, First Affiliate Hospital, Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, People's Republic of China.
Sci Rep. 2021 May 31;11(1):11348. doi: 10.1038/s41598-021-91049-x.
A single tumor marker is not enough to predict the breast pathologic complete response (bpCR) after neoadjuvant chemotherapy (NAC) in breast cancer patients. We aimed to establish a nomogram based on multiple clinicopathological features and routine serological indicators to predict bpCR after NAC in breast cancer patients. Data on clinical factors and laboratory indices of 130 breast cancer patients who underwent NAC and surgery in First Affiliated Hospital of Xi'an Jiaotong University from July 2017 to July 2019 were collected. Multivariable logistic regression analysis identified 11 independent indicators: body mass index, carbohydrate antigen 125, total protein, blood urea nitrogen, cystatin C, serum potassium, serum phosphorus, platelet distribution width, activated partial thromboplastin time, thrombin time, and hepatitis B surface antibodies. The nomogram was established based on these indicators. The 1000 bootstrap resampling internal verification calibration curve and the GiViTI calibration belt showed that the model was well calibrated. The Brier score of 0.095 indicated that the nomogram had a high accuracy. The area under the curve (AUC) of receiver operating characteristic (ROC) curve was 0.941 (95% confidence interval: 0.900-0.982) showed good discrimination of the model. In conclusion, this nomogram showed high accuracy and specificity and did not increase the economic burden of patients, thereby having a high clinical application value.
单一的肿瘤标志物不足以预测乳腺癌新辅助化疗(NAC)后的病理完全缓解(bpCR)。我们旨在建立一个基于多个临床病理特征和常规血清指标的列线图,以预测乳腺癌患者 NAC 后的 bpCR。收集了 2017 年 7 月至 2019 年 7 月在西安交通大学第一附属医院接受 NAC 和手术的 130 例乳腺癌患者的临床因素和实验室指标数据。多变量逻辑回归分析确定了 11 个独立指标:体重指数、糖链抗原 125、总蛋白、血尿素氮、胱抑素 C、血清钾、血清磷、血小板分布宽度、活化部分凝血活酶时间、凝血酶时间和乙型肝炎表面抗体。该列线图是基于这些指标建立的。1000 次 bootstrap 重采样内部验证校准曲线和 GiViTI 校准带表明该模型具有良好的校准度。Brier 评分 0.095 表明该列线图具有较高的准确性。受试者工作特征(ROC)曲线下面积(AUC)为 0.941(95%置信区间:0.900-0.982),表明该模型具有良好的区分度。总之,该列线图具有较高的准确性和特异性,且不会增加患者的经济负担,因此具有较高的临床应用价值。