Suppr超能文献

基于纵向磁共振成像的具有质量效应的脑胶质瘤生长模型。

Modeling of Glioma Growth With Mass Effect by Longitudinal Magnetic Resonance Imaging.

出版信息

IEEE Trans Biomed Eng. 2021 Dec;68(12):3713-3724. doi: 10.1109/TBME.2021.3085523. Epub 2021 Nov 19.

Abstract

It is well-known that expanding glioblastomas typically induce significant deformations of the surrounding parenchyma (i.e., the so-called "mass effect"). In this study, we evaluate the performance of three mathematical models of tumor growth: 1) a reaction-diffusion-advection model which accounts for mass effect (RDAM), 2) a reaction-diffusion model with mass effect that is consistent only in the case of small deformations (RDM), and 3) a reaction-diffusion model that does not include the mass effect (RD). The models were calibrated with magnetic resonance imaging (MRI) data obtained during tumor development in a murine model of glioma (n = 9). We obtained T-weighted and contrast-enhanced T-weighted MRI at 6 time points over 10 days to determine the spatiotemporal variation in the mass effect and the volume fraction of tumor cells, respectively. We calibrated the three models using data 1) at the first four, 2) only at the first and fourth, and 3) only at the third and fourth time points. Each of these calibrations were run forward in time to predict the volume fraction of tumor cells at the conclusion of the experiment. The diffusion coefficient for the RDAM model (median of 10.65 × 10 mm · d ) is significantly less than those for the RD and RDM models (17.46 × 10 mm · d and 19.38 × 10 mm · d , respectively). The error in the tumor volume fraction for the RD, RDM, and RDAM models have medians of 40.2%, 32.1%, and 44.7%, respectively, for the calibration using data from the first four time points. The RDM model most accurately predicts tumor growth, while the RDAM model presents the least variation in its estimates of the diffusion coefficient and proliferation rate. This study demonstrates that the mathematical models capture both tumor development and mass effect observed in experiments.

摘要

众所周知,扩展的脑胶质瘤通常会导致周围实质(即所谓的“肿块效应”)发生显著变形。在这项研究中,我们评估了三种肿瘤生长数学模型的性能:1)一种考虑肿块效应的反应-扩散-对流模型(RDAM),2)一种仅在小变形情况下才与肿块效应一致的反应-扩散模型(RDM),以及 3)一种不包括肿块效应的反应-扩散模型(RD)。使用磁共振成像(MRI)数据对模型进行了校准,这些数据是在脑胶质瘤的小鼠模型中肿瘤发展过程中获得的(n=9)。我们在 10 天内获得了 6 个时间点的 T 加权和对比增强 T 加权 MRI,以分别确定肿块效应的时空变化和肿瘤细胞的体积分数。我们使用以下三种数据校准了三种模型:1)前四个时间点的数据,2)仅前两个和第四个时间点的数据,以及 3)仅第三个和第四个时间点的数据。对每个模型进行了时间向前预测,以预测实验结束时肿瘤细胞的体积分数。RDAM 模型的扩散系数(中位数为 10.65×10 mm·d )明显小于 RD 和 RDM 模型的扩散系数(分别为 17.46×10 mm·d 和 19.38×10 mm·d )。在使用前四个时间点的数据进行校准的情况下,RD、RDM 和 RDAM 模型的肿瘤体积分数误差中位数分别为 40.2%、32.1%和 44.7%。RDM 模型最准确地预测了肿瘤生长,而 RDAM 模型在其扩散系数和增殖率估计方面的变化最小。本研究表明,这些数学模型可以捕捉到实验中观察到的肿瘤发展和肿块效应。

相似文献

引用本文的文献

本文引用的文献

5
Selection, calibration, and validation of models of tumor growth.肿瘤生长模型的选择、校准与验证。
Math Models Methods Appl Sci. 2016 Nov;26(12):2341-2368. doi: 10.1142/S021820251650055X. Epub 2016 Oct 3.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验