Weis Jared A, Miga Michael I, Yankeelov Thomas E
Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.
Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA ; Department of Neurosurgery, Vanderbilt University, Nashville, TN, USA ; Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, USA.
Comput Methods Appl Mech Eng. 2017 Feb 1;314:494-512. doi: 10.1016/j.cma.2016.08.024. Epub 2016 Sep 1.
The use of quantitative medical imaging data to initialize and constrain mechanistic mathematical models of tumor growth has demonstrated a compelling strategy for predicting therapeutic response. More specifically, we have demonstrated a data-driven framework for prediction of residual tumor burden following neoadjuvant therapy in breast cancer that uses a biophysical mathematical model combining reaction-diffusion growth/therapy dynamics and biomechanical effects driven by early time point imaging data. Whereas early work had been based on a limited dimensionality reduction (two-dimensional planar modeling analysis) to simplify the numerical implementation, in this work, we extend our framework to a fully volumetric, three-dimensional biophysical mathematical modeling approach in which parameter estimates are generated by an inverse problem based on the adjoint state method for numerical efficiency. In an performance study, we show accurate parameter estimation with error less than 3% as compared to ground truth. We apply the approach to patient data from a patient with pathological complete response and a patient with residual tumor burden and demonstrate technical feasibility and predictive potential with direct comparisons between imaging data observation and model predictions of tumor cellularity and volume. Comparisons to our previous two-dimensional modeling framework reflect enhanced model prediction of residual tumor burden through the inclusion of additional imaging slices of patient-specific data.
利用定量医学成像数据来初始化和约束肿瘤生长的机械数学模型,已证明是一种预测治疗反应的极具说服力的策略。更具体地说,我们已经展示了一个数据驱动的框架,用于预测乳腺癌新辅助治疗后的残余肿瘤负荷,该框架使用了一个生物物理数学模型,该模型结合了反应扩散生长/治疗动力学以及由早期时间点成像数据驱动的生物力学效应。早期的工作基于有限的降维(二维平面建模分析)来简化数值实现,而在这项工作中,我们将我们的框架扩展到一个完全体积化的三维生物物理数学建模方法,其中参数估计是通过基于伴随状态法的反问题生成的,以提高数值效率。在一项性能研究中,我们表明与真实值相比,参数估计准确,误差小于3%。我们将该方法应用于一名病理完全缓解患者和一名有残余肿瘤负荷患者的患者数据,并通过对肿瘤细胞密度和体积的成像数据观察与模型预测之间的直接比较,证明了技术可行性和预测潜力。与我们之前的二维建模框架的比较反映出,通过纳入患者特定数据的额外成像切片,模型对残余肿瘤负荷的预测得到了增强。