文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Fundamentals to Apply Magnetic Nanoparticles for Hyperthermia Therapy.

作者信息

Fatima Hira, Charinpanitkul Tawatchai, Kim Kyo-Seon

机构信息

Department of Chemical Engineering, Kangwon National University Chuncheon, Kangwon-do 24341, Korea.

Center of Excellence in Particle Technology, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand.

出版信息

Nanomaterials (Basel). 2021 May 1;11(5):1203. doi: 10.3390/nano11051203.


DOI:10.3390/nano11051203
PMID:34062851
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8147361/
Abstract

The activation of magnetic nanoparticles in hyperthermia treatment by an external alternating magnetic field is a promising technique for targeted cancer therapy. The external alternating magnetic field generates heat in the tumor area, which is utilized to kill cancerous cells. Depending on the tumor type and site to be targeted, various types of magnetic nanoparticles, with variable coating materials of different shape and surface charge, have been developed. The tunable physical and chemical properties of magnetic nanoparticles enhance their heating efficiency. Moreover, heating efficiency is directly related with the product values of the applied magnetic field and frequency. Protein corona formation is another important parameter affecting the heating efficiency of MNPs in magnetic hyperthermia. This review provides the basics of magnetic hyperthermia, mechanisms of heat losses, thermal doses for hyperthermia therapy, and strategies to improve heating efficiency. The purpose of this review is to build a bridge between the synthesis/coating of magnetic nanoparticles and their practical application in magnetic hyperthermia.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d586/8147361/16847109b234/nanomaterials-11-01203-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d586/8147361/763cf0d15ff3/nanomaterials-11-01203-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d586/8147361/a31e3eba481a/nanomaterials-11-01203-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d586/8147361/a1781e0111d6/nanomaterials-11-01203-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d586/8147361/16847109b234/nanomaterials-11-01203-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d586/8147361/763cf0d15ff3/nanomaterials-11-01203-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d586/8147361/a31e3eba481a/nanomaterials-11-01203-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d586/8147361/a1781e0111d6/nanomaterials-11-01203-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d586/8147361/16847109b234/nanomaterials-11-01203-g003.jpg

相似文献

[1]
Fundamentals to Apply Magnetic Nanoparticles for Hyperthermia Therapy.

Nanomaterials (Basel). 2021-5-1

[2]
Optimization Study on Specific Loss Power in Superparamagnetic Hyperthermia with Magnetite Nanoparticles for High Efficiency in Alternative Cancer Therapy.

Nanomaterials (Basel). 2020-12-26

[3]
Heating Efficiency of Triple Vortex State Cylindrical Magnetic Nanoparticles.

Nanoscale Res Lett. 2019-12-16

[4]
Magnetic Properties of Magnetic Nanoparticles for Efficient Hyperthermia.

Nanomaterials (Basel). 2015-1-9

[5]
Preparation of carboplatin-Fe@C-loaded chitosan nanoparticles and study on hyperthermia combined with pharmacotherapy for liver cancer.

Int J Hyperthermia. 2009-8

[6]
Cell-Promoted Nanoparticle Aggregation Decreases Nanoparticle-Induced Hyperthermia under an Alternating Magnetic Field Independently of Nanoparticle Coating, Core Size, and Subcellular Localization.

ACS Appl Mater Interfaces. 2018-12-20

[7]
Evaluation of magnetic nanoparticles for magnetic fluid hyperthermia.

Int J Hyperthermia. 2019

[8]
A review on hyperthermia via nanoparticle-mediated therapy.

Bull Cancer. 2017-5

[9]
A prediction model for magnetic particle imaging-based magnetic hyperthermia applied to a brain tumor model.

Comput Methods Programs Biomed. 2023-6

[10]
An induction heating device using planar coil with high amplitude alternating magnetic fields for magnetic hyperthermia.

Technol Health Care. 2015

引用本文的文献

[1]
Design and Synthesis of FeO-Loaded Polymer Microspheres with Controlled Morphology: Section II Fabrication of Walnut-like Superparamagnetic Polymer Microspheres.

Polymers (Basel). 2025-7-5

[2]
Application of Pure and Ion-Doped FeB, CoB, MnB, and Fe2B Nanoparticles for Magnetic Hyperthermia.

Materials (Basel). 2025-6-12

[3]
A review of combined imaging and therapeutic applications based on MNMs.

Front Chem. 2025-5-26

[4]
Multipole Expansion of the Scalar Potential on the Basis of Spherical Harmonics: Bridging the Gap Between the Inside and Outside Spaces via Solution of the Poisson Equation.

Materials (Basel). 2025-5-17

[5]
Nonlinear Magnetic Response Measurements in Study of Magnetic Nanoparticles Uptake by Mesenchymal Stem Cells.

Nanomaterials (Basel). 2025-4-29

[6]
Applications and Efficacy of Iron Oxide Nanoparticles in the Treatment of Brain Tumors.

Pharmaceutics. 2025-4-9

[7]
Pulsed Alternating Fields Magnetic Hyperthermia in Combination with Chemotherapy (5-Fluorouracil) as a Cancer Treatment for Glioblastoma Multiform: An In Vitro Study.

Nanomaterials (Basel). 2025-4-5

[8]
Extracellular matrix re-normalization to improve cold tumor penetration by oncolytic viruses.

Front Immunol. 2025-1-8

[9]
Evaluating the impact of cell-penetrating motif position on the cellular uptake of magnetite nanoparticles.

Front Bioeng Biotechnol. 2024-12-2

[10]
Cancer treatment approaches within the frame of hyperthermia, drug delivery systems, and biosensors: concepts and future potentials.

RSC Adv. 2024-12-12

本文引用的文献

[1]
Whither Magnetic Hyperthermia? A Tentative Roadmap.

Materials (Basel). 2021-2-3

[2]
Manganese Ferrite Nanoparticles (MnFeO): Size Dependence for Hyperthermia and Negative/Positive Contrast Enhancement in MRI.

Nanomaterials (Basel). 2020-11-20

[3]
Enhanced In Vitro Magnetic Cell Targeting of Doxorubicin-Loaded Magnetic Liposomes for Localized Cancer Therapy.

Nanomaterials (Basel). 2020-10-23

[4]
Synthesis of Oxide Iron Nanoparticles Using Laser Ablation for Possible Hyperthermia Applications.

Nanomaterials (Basel). 2020-10-23

[5]
Hadron Therapy, Magnetic Nanoparticles and Hyperthermia: A Promising Combined Tool for Pancreatic Cancer Treatment.

Nanomaterials (Basel). 2020-9-25

[6]
Magnetic nanoparticle-loaded polymer nanospheres as magnetic hyperthermia agents.

J Mater Chem B. 2014-1-7

[7]
DOX@Ferumoxytol-Medical Chitosan as magnetic hydrogel therapeutic system for effective magnetic hyperthermia and chemotherapy in vitro.

Colloids Surf B Biointerfaces. 2020-6

[8]
Liver cancer: A leading cause of cancer death in the United States and the role of the 1945-1965 birth cohort by ethnicity.

JHEP Rep. 2019-6-17

[9]
Hyperthermia, Cytotoxicity, and Cellular Uptake Properties of Manganese and Zinc Ferrite Magnetic Nanoparticles Synthesized by a Polyol-Mediated Process.

Nanomaterials (Basel). 2019-10-18

[10]
Maghemite nanoparticles stabilize the protein corona formed with transferrin presenting different iron-saturation levels.

Nanoscale. 2019-8-29

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索