Apostolov Angel T, Apostolova Iliana N, Wesselinowa Julia M
Department of Physics, University of Architecture, Civil Engineering and Geodesy, 1046 Sofia, Bulgaria.
Faculty of Forest Industry, University of Forestry, 1756 Sofia, Bulgaria.
Materials (Basel). 2025 Jun 12;18(12):2765. doi: 10.3390/ma18122765.
This study investigates MnXB (X = Fe, Co) and (FeCo)B nanoparticles as candidates for self-controlled magnetic hyperthermia (SCMH) in cancer therapy. Using a microscopic model and Green's function techniques, we calculate the Curie temperature, saturation magnetization, coercivity, and specific absorption rate as functions of nanoparticle size and dopant concentration. Surface and size effects are taken into account. The results are in good agreement with experimental data, confirming the model's validity and highlighting the potential of these nanoparticles for efficient and safe magnetic hyperthermia applications. We have found that pure and doped MnB and CoB nanoparticles with specific compositions meet biocompatibility requirements for SCMH suitable for in vivo and in vitro, for example, MnCoB ( = 27.1 nm); MnCoB ( = 32.2 nm); MnB ( = 26.3 m); (FeCo)B ( = 22.0 nm); (FeCo)B ( = 26.3 nm); and CoB ( = 31.7 nm).
本研究考察了MnXB(X = Fe、Co)和(FeCo)B纳米颗粒作为癌症治疗中自控磁热疗(SCMH)候选材料的情况。利用微观模型和格林函数技术,我们计算了居里温度、饱和磁化强度、矫顽力以及比吸收率随纳米颗粒尺寸和掺杂浓度的变化。考虑了表面和尺寸效应。结果与实验数据吻合良好,证实了该模型的有效性,并突出了这些纳米颗粒在高效安全磁热疗应用中的潜力。我们发现,具有特定组成的纯MnB和CoB纳米颗粒以及掺杂的MnB和CoB纳米颗粒满足适用于体内和体外SCMH的生物相容性要求,例如,MnCoB(= 27.1纳米);MnCoB(= 32.2纳米);MnB(= 26.3微米);(FeCo)B(= 22.0纳米);(FeCo)B(= 26.3纳米);以及CoB(= 31.7纳米)。