Suppr超能文献

在观察到零事件时估计相对风险——频率论推断与贝叶斯可信区间

Estimating Relative Risk When Observing Zero Events-Frequentist Inference and Bayesian Credibility Intervals.

作者信息

Möller Sören, Ahrenfeldt Linda Juel

机构信息

Department of Clinical Research, University of Southern Denmark, 5000 Odense C, Denmark.

Open Patient Data Explorative Network, Odense University Hospital, 5000 Odense C, Denmark.

出版信息

Int J Environ Res Public Health. 2021 May 21;18(11):5527. doi: 10.3390/ijerph18115527.

Abstract

Relative risk (RR) is a preferred measure for investigating associations in clinical and epidemiological studies with dichotomous outcomes. However, if the outcome of interest is rare, it frequently occurs that no events are observed in one of the comparison groups. In this case, many of the standard methods used to obtain confidence intervals (CIs) for the RRs are not feasible, even in studies with strong statistical evidence of an association. Different strategies for solving this challenge have been suggested in the literature. This paper, which uses both mathematical arguments and statistical simulations, aims to present, compare, and discuss the different statistical approaches to obtain CIs for RRs in the case of no events in one of the comparison groups. Moreover, we compare these frequentist methods with Bayesian approaches to determine credibility intervals (CrIs) for the RRs. Our results indicate that most of the suggested approaches can be used to obtain CIs (or CrIs) for RRs in the case of no events, although one-sided intervals obtained by methods based on deliberate, probabilistic considerations should be preferred over ad hoc methods. In addition, we demonstrate that Bayesian approaches can be used to obtain CrIs in these situations. Thus, it is possible to obtain statistical inference for the RR, even in studies with no events in one of the comparison groups, and CIs for the RRs should always be provided. However, it is important to note that the obtained intervals are sensitive to the method chosen in the case of small sample sizes.

摘要

相对风险(RR)是临床和流行病学研究中用于调查二分结局关联性的首选指标。然而,如果感兴趣的结局罕见,经常会出现其中一个比较组未观察到任何事件的情况。在这种情况下,即使在具有强关联统计证据的研究中,许多用于获得RR置信区间(CI)的标准方法也不可行。文献中提出了不同的解决这一挑战的策略。本文采用数学论证和统计模拟,旨在呈现、比较和讨论在其中一个比较组无事件发生的情况下获得RR置信区间的不同统计方法。此外,我们将这些频率论方法与贝叶斯方法进行比较,以确定RR的可信区间(CrI)。我们的结果表明,大多数建议的方法可用于在无事件发生的情况下获得RR的CI(或CrI),尽管基于刻意概率考量的方法得到的单侧区间应优于临时方法。此外,我们证明了贝叶斯方法可用于在这些情况下获得CrI。因此,即使在其中一个比较组无事件发生的研究中,也有可能获得RR的统计推断,并且应始终提供RR的CI。然而,重要的是要注意,在小样本量的情况下,所获得的区间对所选方法敏感。

相似文献

2
Empirical weighted Bayesian tolerance intervals.经验加权贝叶斯容忍区间
J Biopharm Stat. 2021 Mar;31(2):180-190. doi: 10.1080/10543406.2020.1814801. Epub 2020 Sep 30.
8
Interpreting frequentist hypothesis tests: insights from Bayesian inference.贝叶斯推理视角下的频率派假设检验解读
Can J Anaesth. 2023 Oct;70(10):1560-1575. doi: 10.1007/s12630-023-02557-5. Epub 2023 Oct 4.

引用本文的文献

7
Neurodegenerative disease risk among former international rugby union players.前国际橄榄球联盟球员的神经退行性疾病风险。
J Neurol Neurosurg Psychiatry. 2022 Dec;93(12):1262-1268. doi: 10.1136/jnnp-2022-329675. Epub 2022 Oct 4.

本文引用的文献

4
5
Recommended confidence intervals for two independent binomial proportions.两个独立二项比例的推荐置信区间。
Stat Methods Med Res. 2015 Apr;24(2):224-54. doi: 10.1177/0962280211415469. Epub 2011 Oct 13.
8
On estimating the relation between blood group and disease.关于评估血型与疾病之间的关系。
Ann Hum Genet. 1955 Jun;19(4):251-3. doi: 10.1111/j.1469-1809.1955.tb01348.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验