Zhou Fan, Liu Biaodi, Liu Xin, Li Yan, Wang Luoluo, Huang Jia, Luo Guanzheng, Wang Xiaoyun
Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China.
State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.
Metabolites. 2021 May 6;11(5):298. doi: 10.3390/metabo11050298.
The host microbiome plays an important role in regulating physiology through microbiota-derived metabolites during host-microbiome interactions. However, molecular mechanism underly host-microbiome interactions remains to be explored. In this study, we used as the model to investigate the influence of microbiome and microbiota-derived metabolite sodium butyrate on host transcriptome and metabolome. We established both a sterile model and a conventional model to demonstrate the role of sodium butyrate. Using multi-omics analysis, we found that microbiome and sodium butyrate could impact host gene expression patterns in both the sterile model and the conventional model. The analysis of gut microbial using 16S rRNA sequencing showed sodium butyrate treatment also influenced bacterial structures. In addition, metabolites identified by ultra-high performance liquid chromatography-MS/MS were shown to be affected by sodium butyrate treatment with lipids as the dominant changed components. Our integrative analysis of the transcriptome, the microbiome, and the metabolome data identified candidate transcripts that are coregulated by sodium butyrate. Taken together, our results reveal the impact of the microbiome and microbiota-derived sodium butyrate on host transcriptome and metabolome, and our work provides a better understanding of host-microbiome interactions at the molecular level with multi-omics data.
在宿主-微生物组相互作用过程中,宿主微生物组通过微生物群衍生的代谢产物在调节生理方面发挥着重要作用。然而,宿主-微生物组相互作用的分子机制仍有待探索。在本研究中,我们以[具体模型名称未给出]为模型,研究微生物组和微生物群衍生的代谢产物丁酸钠对宿主转录组和代谢组的影响。我们建立了无菌[模型名称未给出]模型和传统[模型名称未给出]模型来证明丁酸钠的作用。通过多组学分析,我们发现微生物组和丁酸钠在无菌[模型名称未给出]模型和传统[模型名称未给出]模型中均可影响宿主基因表达模式。使用16S rRNA测序对肠道微生物进行分析表明,丁酸钠处理也会影响[细菌名称未给出]的细菌结构。此外,通过超高效液相色谱-质谱/质谱鉴定的[代谢物名称未给出]代谢产物显示受丁酸钠处理的影响,其中脂质是主要的变化成分。我们对转录组、微生物组和代谢组数据的综合分析确定了受丁酸钠共同调节的候选转录本。综上所述,我们的结果揭示了微生物组和微生物群衍生的丁酸钠对宿主转录组和代谢组的影响,并且我们的工作通过多组学数据在分子水平上更好地理解了宿主-微生物组的相互作用。