Oruganti Venkata Sanjay Sarma, Koenig Amie, Pidaparti Ramana M
College of Engineering, University of Georgia, Athens, GA 30602, USA.
College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA.
Bioengineering (Basel). 2021 May 7;8(5):60. doi: 10.3390/bioengineering8050060.
Patients whose lungs are compromised due to various respiratory health concerns require mechanical ventilation for support in breathing. Different mechanical ventilation settings are selected depending on the patient's lung condition, and the selection of these parameters depends on the observed patient response and experience of the clinicians involved. To support this decision-making process for clinicians, good prediction models are always beneficial in improving the setting accuracy, reducing treatment error, and quickly weaning patients off the ventilation support. In this study, we developed a machine learning model for estimation of the mechanical ventilation parameters for lung health. The model is based on inverse mapping of artificial neural networks with the Graded Particle Swarm Optimizer. In this new variant, we introduced grouping and hierarchy in the swarm in addition to the general rules of particle swarm optimization to further improve its prediction performance of the mechanical ventilation parameters. The machine learning model was trained and tested using clinical data from canine and feline patients at the University of Georgia College of Veterinary Medicine. Our model successfully generated a range of parameter values for the mechanical ventilation applied on test data, with the average prediction values over multiple trials close to the target values. Overall, the developed machine learning model should be able to predict the mechanical ventilation settings for various respiratory conditions for patient's survival once the relevant data are available.
由于各种呼吸健康问题而导致肺部功能受损的患者需要机械通气来支持呼吸。根据患者的肺部状况选择不同的机械通气设置,而这些参数的选择取决于观察到的患者反应以及相关临床医生的经验。为了支持临床医生的这一决策过程,良好的预测模型对于提高设置准确性、减少治疗误差以及使患者快速脱离通气支持总是有益的。在本研究中,我们开发了一种用于估计肺部健康机械通气参数的机器学习模型。该模型基于带有梯度粒子群优化器的人工神经网络的逆映射。在这个新变体中,除了粒子群优化的一般规则外,我们还在群体中引入了分组和层次结构,以进一步提高其对机械通气参数的预测性能。使用佐治亚大学兽医学院犬科和猫科患者的临床数据对该机器学习模型进行了训练和测试。我们的模型成功地为应用于测试数据的机械通气生成了一系列参数值,多次试验的平均预测值接近目标值。总体而言,一旦获得相关数据,所开发的机器学习模型应该能够预测各种呼吸状况下的机械通气设置,以保障患者存活。