Suppr超能文献

基于计时起立行走测试运动学的老年人跌倒风险的机器学习预测。

Machine Learning Prediction of Fall Risk in Older Adults Using Timed Up and Go Test Kinematics.

机构信息

Department of Industrial and Systems Engineering, University of Iowa, Iowa City, IA 52242, USA.

Department of Family Medicine, University of Iowa, Iowa City, IA 52242, USA.

出版信息

Sensors (Basel). 2021 May 17;21(10):3481. doi: 10.3390/s21103481.

Abstract

Falls among the elderly population cause detrimental physical, mental, financial problems and, in the worst case, death. The increasing number of people entering the higher risk age-range has increased clinicians' attention to intervene. Clinical tools, e.g., the Timed Up and Go (TUG) test, have been created for aiding clinicians in fall-risk assessment. Often simple to evaluate, these assessments are subject to a clinician's judgment. Wearable sensor data with machine learning algorithms were introduced as an alternative to precisely quantify ambulatory kinematics and predict prospective falls. However, they require a long-term evaluation of large samples of subjects' locomotion and complex feature engineering of sensor kinematics. Therefore, it is critical to build an objective fall-risk detection model that can efficiently measure biometric risk factors with minimal costs. We built and studied a sensor data-driven convolutional neural network model to predict older adults' fall-risk status with relatively high sensitivity to geriatrician's expert assessment. The sample in this study is representative of older patients with multiple co-morbidity seen in daily medical practice. Three non-intrusive wearable sensors were used to measure participants' gait kinematics during the TUG test. This data collection ensured convenient capture of various gait impairment aspects at different body locations.

摘要

老年人跌倒会导致身体、心理和经济上的不良后果,在最坏的情况下甚至会导致死亡。进入高风险年龄段的人数不断增加,这引起了临床医生的关注,需要进行干预。临床工具,如计时起立行走(TUG)测试,已经被创建用于帮助临床医生进行跌倒风险评估。这些评估通常很容易进行评估,但受到临床医生判断的影响。可穿戴传感器数据和机器学习算法已被引入作为替代方法,以精确量化动态运动并预测未来的跌倒。然而,它们需要对大量受试者的运动进行长期评估,并对传感器运动学进行复杂的特征工程。因此,建立一个能够高效地测量生物识别风险因素且成本最小的客观跌倒风险检测模型非常重要。我们构建并研究了一个基于传感器数据的卷积神经网络模型,以预测老年人的跌倒风险状况,该模型对老年病医生的专家评估具有较高的敏感性。本研究中的样本代表了在日常医疗实践中常见的患有多种合并症的老年患者。使用三个非侵入性可穿戴传感器来测量参与者在 TUG 测试期间的步态运动学。这种数据采集确保了在不同身体部位方便地捕捉到各种步态障碍方面。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6be3/8156094/4b12ab04dbf7/sensors-21-03481-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验