Suppr超能文献

深度学习利用基于RNA的变异改进胰腺癌诊断。

Deep Learning Improves Pancreatic Cancer Diagnosis Using RNA-Based Variants.

作者信息

Al-Fatlawi Ali, Malekian Negin, García Sebastián, Henschel Andreas, Kim Ilwook, Dahl Andreas, Jahnke Beatrix, Bailey Peter, Bolz Sarah Naomi, Poetsch Anna R, Mahler Sandra, Grützmann Robert, Pilarsky Christian, Schroeder Michael

机构信息

Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, 01307 Dresden, Germany.

Department of Visceral, Thoracic and Vascular Surgery, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany.

出版信息

Cancers (Basel). 2021 May 28;13(11):2654. doi: 10.3390/cancers13112654.

Abstract

For optimal pancreatic cancer treatment, early and accurate diagnosis is vital. Blood-derived biomarkers and genetic predispositions can contribute to early diagnosis, but they often have limited accuracy or applicability. Here, we seek to exploit the synergy between them by combining the biomarker CA19-9 with RNA-based variants. We use deep sequencing and deep learning to improve differentiating pancreatic cancer and chronic pancreatitis. We obtained samples of nucleated cells found in peripheral blood from 268 patients suffering from resectable, non-resectable pancreatic cancer, and chronic pancreatitis. We sequenced RNA with high coverage and obtained millions of variants. The high-quality variants served as input together with CA19-9 values to deep learning models. Our model achieved an area under the curve (AUC) of 96% in differentiating resectable cancer from pancreatitis using a test cohort. Moreover, we identified variants to estimate survival in resectable cancer. We show that the blood transcriptome harbours variants, which can substantially improve noninvasive clinical diagnosis.

摘要

对于胰腺癌的最佳治疗而言,早期准确诊断至关重要。血液来源的生物标志物和遗传易感性有助于早期诊断,但它们的准确性或适用性往往有限。在此,我们试图通过将生物标志物CA19-9与基于RNA的变异相结合来利用它们之间的协同作用。我们使用深度测序和深度学习来改善胰腺癌与慢性胰腺炎的鉴别诊断。我们从268例患有可切除、不可切除胰腺癌及慢性胰腺炎的患者中获取外周血中有核细胞样本。我们对RNA进行了高覆盖度测序并获得了数百万个变异。高质量变异与CA19-9值一起作为深度学习模型的输入。我们的模型在使用测试队列鉴别可切除癌症与胰腺炎时,曲线下面积(AUC)达到了96%。此外,我们鉴定出了可用于估计可切除癌症患者生存情况的变异。我们表明血液转录组中存在变异,其可显著改善非侵入性临床诊断。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验