Gardiner Alicia, Daly Paul, Domingo-Roca Roger, Windmill James F C, Feeney Andrew, Jackson-Camargo Joseph C
Centre for Ultrasonic Engineering, Department of Electronic & Electrical Engineering, University of Strathclyde, Glasgow G1 1XW, UK.
Centre for Medical and Industrial Ultrasonics, James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK.
Micromachines (Basel). 2021 May 29;12(6):634. doi: 10.3390/mi12060634.
Acoustic metamaterials are large-scale materials with small-scale structures. These structures allow for unusual interaction with propagating sound and endow the large-scale material with exceptional acoustic properties not found in normal materials. However, their multi-scale nature means that the manufacture of these materials is not trivial, often requiring micron-scale resolution over centimetre length scales. In this review, we bring together a variety of acoustic metamaterial designs and separately discuss ways to create them using the latest trends in additive manufacturing. We highlight the advantages and disadvantages of different techniques that act as barriers towards the development of realisable acoustic metamaterials for practical audio and ultrasonic applications and speculate on potential future developments.
声学超材料是具有小尺度结构的大尺度材料。这些结构允许与传播的声音进行异常相互作用,并赋予大尺度材料普通材料所没有的特殊声学特性。然而,它们的多尺度性质意味着这些材料的制造并非易事,通常需要在厘米长度尺度上具备微米级分辨率。在本综述中,我们汇集了各种声学超材料设计,并分别讨论了利用增材制造的最新趋势来制造它们的方法。我们强调了不同技术的优缺点,这些技术是实现用于实际音频和超声应用的可实现声学超材料发展的障碍,并对潜在的未来发展进行了推测。