文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于聚合物的纳米疫苗的最新进展与未来展望

Recent Advances and Future Perspectives in Polymer-Based Nanovaccines.

作者信息

Pippa Natassa, Gazouli Maria, Pispas Stergios

机构信息

Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece.

Department of Pharmaceutical Technology, Faculty of Pharmacy, Panepistimioupolis Zografou, National and Kapodistrian University of Athens, 15771 Athens, Greece.

出版信息

Vaccines (Basel). 2021 May 26;9(6):558. doi: 10.3390/vaccines9060558.


DOI:10.3390/vaccines9060558
PMID:34073648
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8226647/
Abstract

Vaccination is the most valuable and cost-effective health measure to prevent and control the spread of infectious diseases. A significant number of infectious diseases and chronic disorders are still not preventable by existing vaccination schemes; therefore, new-generation vaccines are needed. Novel technologies such as nanoparticulate systems and adjuvants can enable safe and effective vaccines for difficult target populations such as newborns, elderly, and the immune-compromised. More recently, polymer-based particles have found application as vaccine platforms and vaccine adjuvants due to their ability to prevent antigen degradation and clearance, coupled with enhanced uptake by professional antigen-presenting cells (APCs). Polymeric nanoparticles have been applied in vaccine delivery, showing significant adjuvant effects as they can easily be taken up by APCs. In other words, polymer-based systems offer a lot of advantages, including versatility and flexibility in the design process, the ability to incorporate a range of immunomodulators/antigens, mimicking infection in different ways, and acting as a depot, thereby persisting long enough to generate adaptive immune responses. The aim of this review is to summarize the properties, the characteristics, the added value, and the limitations of the polymer-based nanovaccines, as well as the process of their development by the pharmaceutical industry.

摘要

疫苗接种是预防和控制传染病传播最具价值且成本效益高的健康措施。现有疫苗接种方案仍无法预防大量的传染病和慢性疾病;因此,需要新一代疫苗。纳米颗粒系统和佐剂等新技术能够为新生儿、老年人和免疫功能低下者等难以接种疫苗的人群提供安全有效的疫苗。最近,基于聚合物的颗粒因其能够防止抗原降解和清除,并增强专业抗原呈递细胞(APC)的摄取,已被用作疫苗平台和疫苗佐剂。聚合物纳米颗粒已应用于疫苗递送,由于它们能够被APC轻松摄取,因此显示出显著的佐剂效应。换句话说,基于聚合物的系统具有许多优点,包括设计过程中的多功能性和灵活性、纳入一系列免疫调节剂/抗原的能力、以不同方式模拟感染以及作为储存库,从而持续足够长的时间以产生适应性免疫反应。本综述的目的是总结基于聚合物的纳米疫苗的特性、特征、附加值和局限性,以及制药行业开发它们的过程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a790/8226647/3adba97700b2/vaccines-09-00558-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a790/8226647/418d8707ea14/vaccines-09-00558-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a790/8226647/10441ea061d2/vaccines-09-00558-sch001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a790/8226647/56622840593e/vaccines-09-00558-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a790/8226647/333ce4276205/vaccines-09-00558-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a790/8226647/a3ea78b08906/vaccines-09-00558-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a790/8226647/25aada631c39/vaccines-09-00558-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a790/8226647/3adba97700b2/vaccines-09-00558-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a790/8226647/418d8707ea14/vaccines-09-00558-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a790/8226647/10441ea061d2/vaccines-09-00558-sch001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a790/8226647/56622840593e/vaccines-09-00558-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a790/8226647/333ce4276205/vaccines-09-00558-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a790/8226647/a3ea78b08906/vaccines-09-00558-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a790/8226647/25aada631c39/vaccines-09-00558-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a790/8226647/3adba97700b2/vaccines-09-00558-g006.jpg

相似文献

[1]
Recent Advances and Future Perspectives in Polymer-Based Nanovaccines.

Vaccines (Basel). 2021-5-26

[2]
Poly(lactic acid) and poly(lactic-co-glycolic acid) particles as versatile carrier platforms for vaccine delivery.

Nanomedicine (Lond). 2014-12

[3]
Biodegradable polymer microspheres as vaccine adjuvants and delivery systems.

Dev Biol Stand. 1998

[4]
Stimuli-Responsive Polymeric Nanovaccines Toward Next-Generation Immunotherapy.

ACS Nano. 2023-6-13

[5]
Nanovaccines for cancer immunotherapy: Focusing on complex formation between adjuvant and antigen.

Int Immunopharmacol. 2023-4

[6]
pH-Responsive Poly(D,L-lactic-co-glycolic acid) Nanoparticles with Rapid Antigen Release Behavior Promote Immune Response.

ACS Nano. 2015-4-24

[7]
Biodegradable Polymeric Nanoparticles-Based Vaccine Adjuvants for Lymph Nodes Targeting.

Vaccines (Basel). 2016-10-12

[8]
Poly(lactic acid)-based particulate systems are promising tools for immune modulation.

Acta Biomater. 2016-11-4

[9]
Self-adjuvanting cancer nanovaccines.

J Nanobiotechnology. 2022-7-26

[10]
Polymer-Based Nanomaterials and Applications for Vaccines and Drugs.

Polymers (Basel). 2018-1-2

引用本文的文献

[1]
Safety and Toxicological Evaluation of Subunit Keyhole Limpet Hemocyanin-Loaded Lipid-PLGA Hybrid Nanoparticles (sKLH-hNPs) as a Nanocarrier for an Opioid Use Disorder Vaccine.

Int J Toxicol. 2025-7-5

[2]
Advances in the Functionalization of Vaccine Delivery Systems: Innovative Strategies and Translational Perspectives.

Pharmaceutics. 2025-5-12

[3]
Nanovaccines empowering CD8 T cells: a precision strategy to enhance cancer immunotherapy.

Theranostics. 2025-2-10

[4]
Current and emerging strategies for the prevention of hepatocellular carcinoma.

Nat Rev Gastroenterol Hepatol. 2025-3

[5]
Precision Nanovaccines for Potent Vaccination.

JACS Au. 2024-7-31

[6]
The quest for nanoparticle-powered vaccines in cancer immunotherapy.

J Nanobiotechnology. 2024-2-14

[7]
Development of novel polymer haemoglobin based particles as an antioxidant, antibacterial and an oxygen carrier agents.

Sci Rep. 2024-2-6

[8]
A Glance on Nanovaccine: A Potential Approach for Disease Prevention.

Curr Pharm Biotechnol. 2024

[9]
Delivery of Immunostimulatory Cargos in Nanocarriers Enhances Anti-Tumoral Nanovaccine Efficacy.

Int J Mol Sci. 2023-7-29

[10]
Recent Advances on PEO-PCL Block and Graft Copolymers as Nanocarriers for Drug Delivery Applications.

Materials (Basel). 2023-3-13

本文引用的文献

[1]
Toward the prevention of coronavirus infection: what role can polymers play?

Mater Today Adv. 2021-6

[2]
Nanotechnology for virus treatment.

Nano Today. 2021-2

[3]
Focus on COVID-19: Antiviral polymers in drugs and vaccines.

Polim Med. 2020

[4]
Advances in Oral Subunit Vaccine Design.

Vaccines (Basel). 2020-12-22

[5]
Polymeric nanoparticle vaccines to combat emerging and pandemic threats.

Biomaterials. 2021-1

[6]
DNA vaccines against COVID-19: Perspectives and challenges.

Life Sci. 2021-2-15

[7]
Engineered Nanoparticles for Cancer Vaccination and Immunotherapy.

Acc Chem Res. 2020-10-20

[8]
Vaccines for COVID-19: perspectives from nucleic acid vaccines to BCG as delivery vector system.

Microbes Infect. 2020

[9]
Synthetic Particles for Cancer Vaccines: Connecting the Inherent Supply Chain.

Acc Chem Res. 2020-10-20

[10]
How can nanotechnology help to combat COVID-19? Opportunities and urgent need.

J Nanobiotechnology. 2020-9-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索