Suppr超能文献

使用刚性三体融合生成有序蛋白质组装体。

Generation of ordered protein assemblies using rigid three-body fusion.

机构信息

Institute for Protein Design, University of Washington, Seattle, WA 98195.

Department of Biochemistry, University of Washington, Seattle, WA 98195.

出版信息

Proc Natl Acad Sci U S A. 2021 Jun 8;118(23). doi: 10.1073/pnas.2015037118.

Abstract

Protein nanomaterial design is an emerging discipline with applications in medicine and beyond. A long-standing design approach uses genetic fusion to join protein homo-oligomer subunits via α-helical linkers to form more complex symmetric assemblies, but this method is hampered by linker flexibility and a dearth of geometric solutions. Here, we describe a general computational method for rigidly fusing homo-oligomer and spacer building blocks to generate user-defined architectures that generates far more geometric solutions than previous approaches. The fusion junctions are then optimized using Rosetta to minimize flexibility. We apply this method to design and test 92 dihedral symmetric protein assemblies using a set of designed homodimers and repeat protein building blocks. Experimental validation by native mass spectrometry, small-angle X-ray scattering, and negative-stain single-particle electron microscopy confirms the assembly states for 11 designs. Most of these assemblies are constructed from designed ankyrin repeat proteins (DARPins), held in place on one end by α-helical fusion and on the other by a designed homodimer interface, and we explored their use for cryogenic electron microscopy (cryo-EM) structure determination by incorporating DARPin variants selected to bind targets of interest. Although the target resolution was limited by preferred orientation effects and small scaffold size, we found that the dual anchoring strategy reduced the flexibility of the target-DARPIN complex with respect to the overall assembly, suggesting that multipoint anchoring of binding domains could contribute to cryo-EM structure determination of small proteins.

摘要

蛋白质纳米材料设计是一个新兴的学科,在医学和其他领域都有应用。一种长期存在的设计方法是使用基因融合,通过α-螺旋连接子将蛋白质同源寡聚体亚基连接起来,形成更复杂的对称组装体,但这种方法受到连接子的灵活性和缺乏几何解决方案的限制。在这里,我们描述了一种通用的计算方法,用于刚性融合同源寡聚体和间隔构建块,以生成用户定义的结构,生成的几何解决方案比以前的方法多得多。然后使用 Rosetta 对融合接头进行优化,以最小化灵活性。我们应用这种方法设计并测试了 92 个二面角对称的蛋白质组装体,使用了一组设计的同源二聚体和重复蛋白构建块。通过天然质谱、小角度 X 射线散射和负染色单颗粒电子显微镜的实验验证,确认了 11 个设计的组装状态。这些组装体大多由设计的锚蛋白重复蛋白(DARPin)组成,一端由α-螺旋融合固定,另一端由设计的同源二聚体界面固定,我们探索了它们在低温电子显微镜(cryo-EM)结构测定中的用途,方法是将结合感兴趣靶标的 DARPin 变体纳入其中。尽管目标分辨率受到优先取向效应和小支架尺寸的限制,但我们发现双锚定策略降低了目标-DARPin 复合物相对于整体组装的灵活性,这表明结合域的多点锚定可能有助于小蛋白的 cryo-EM 结构测定。

相似文献

7
X-ray crystal structure of a designed rigidified imaging scaffold in the ligand-free conformation.无配体状态下刚性化成像支架的设计 X 射线晶体结构。
Acta Crystallogr F Struct Biol Commun. 2024 May 1;80(Pt 5):107-115. doi: 10.1107/S2053230X2400414X. Epub 2024 May 20.
8
Modular repeat protein sculpting using rigid helical junctions.使用刚性螺旋连接进行模块化重复蛋白塑造。
Proc Natl Acad Sci U S A. 2020 Apr 21;117(16):8870-8875. doi: 10.1073/pnas.1908768117. Epub 2020 Apr 3.
9
Conformational flexibility of an anti-IL-13 DARPin†.一种抗白细胞介素-13设计锚蛋白的构象灵活性†
Protein Eng Des Sel. 2017 Jan;30(1):31-37. doi: 10.1093/protein/gzw059. Epub 2016 Nov 23.
10
Chaperone-assisted structure elucidation with DARPins.DARPins 辅助伴侣蛋白协助的结构解析。
Curr Opin Struct Biol. 2020 Feb;60:93-100. doi: 10.1016/j.sbi.2019.12.009. Epub 2020 Jan 6.

引用本文的文献

6
Rapid and automated design of two-component protein nanomaterials using ProteinMPNN.使用 ProteinMPNN 快速自动化设计双组份蛋白质纳米材料。
Proc Natl Acad Sci U S A. 2024 Mar 26;121(13):e2314646121. doi: 10.1073/pnas.2314646121. Epub 2024 Mar 19.

本文引用的文献

8
Real-time cryo-electron microscopy data preprocessing with Warp.使用 Warp 进行实时低温电子显微镜数据预处理。
Nat Methods. 2019 Nov;16(11):1146-1152. doi: 10.1038/s41592-019-0580-y. Epub 2019 Oct 7.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验