Suppr超能文献

通过实验已知的抑制剂甲磺酸卡莫司他、那法莫司他和盐酸溴己新控制严重急性呼吸综合征冠状病毒2(SARS-CoV-2)时TMPRSS2的结构见解和抑制机制:一种分子建模方法

Structural insights and inhibition mechanism of TMPRSS2 by experimentally known inhibitors Camostat mesylate, Nafamostat and Bromhexine hydrochloride to control SARS-coronavirus-2: A molecular modeling approach.

作者信息

Sonawane Kailas D, Barale Sagar S, Dhanavade Maruti J, Waghmare Shailesh R, Nadaf Naiem H, Kamble Subodh A, Mohammed Ali Abdulmawjood, Makandar Asiya M, Fandilolu Prayagraj M, Dound Ambika S, Naik Nitin M, More Vikramsinh B

机构信息

Structural Bioinformatics Unit, Department of Biochemistry, Shivaji University, Vidyanagar, Kolhapur, 416004, Maharashtra, India.

Department of Microbiology, Shivaji University, Vidyanagar, Kolhapur, 416004, Maharashtra, India.

出版信息

Inform Med Unlocked. 2021;24:100597. doi: 10.1016/j.imu.2021.100597. Epub 2021 May 26.

Abstract

Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) has been responsible for the cause of global pandemic Covid-19 and to date, there is no effective treatment available. The spike 'S' protein of SARS-CoV-2 and ACE2 of the host cell are being targeted to design new drugs to control Covid-19. Similarly, a transmembrane serine protease, TMPRSS2 of the host cell plays a significant role in the proteolytic cleavage of viral 'S' protein helpful for the priming of ACE2 receptors and viral entry into human cells. However, three-dimensional structural information and the inhibition mechanism of TMPRSS2 is yet to be explored experimentally. Hence, we have used a molecular dynamics (MD) simulated homology model of TMPRSS2 to study the inhibition mechanism of experimentally known inhibitors Camostat mesylate, Nafamostat and Bromhexine hydrochloride (BHH) using molecular modeling techniques. Prior to docking, all three inhibitors were geometry optimized by semi-empirical quantum chemical RM1 method. Molecular docking analysis revealed that Camostat mesylate and its structural analogue Nafamostat interact strongly with residues His296 and Ser441 present in the catalytic triad of TMPRSS2, whereas BHH binds with Ala386 along with other residues. Comparative molecular dynamics simulations revealed the stable behavior of all the docked complexes. MM-PBSA calculations also revealed the stronger binding of Camostat mesylate to TMPRSS2 active site residues as compared to Nafamostat and BHH. Thus, this structural information could be useful to understand the mechanistic approach of TMPRSS2 inhibition, which may be helpful to design new lead compounds to prevent the entry of SARS-Coronavirus 2 in human cells.

摘要

严重急性呼吸综合征冠状病毒2(SARS-CoV-2)引发了全球大流行的新冠肺炎,迄今为止,尚无有效的治疗方法。SARS-CoV-2的刺突“S”蛋白和宿主细胞的血管紧张素转换酶2(ACE2)成为设计控制新冠肺炎新药的靶点。同样,宿主细胞的一种跨膜丝氨酸蛋白酶TMPRSS2在病毒“S”蛋白的蛋白水解切割中起重要作用,有助于启动ACE2受体并使病毒进入人体细胞。然而,TMPRSS2的三维结构信息及其抑制机制尚未通过实验探索。因此,我们使用TMPRSS2的分子动力学(MD)模拟同源模型,采用分子建模技术研究了实验已知抑制剂甲磺酸卡莫司他、那法莫司他和盐酸溴己新(BHH)的抑制机制。在对接之前,所有三种抑制剂均通过半经验量子化学RM1方法进行几何优化。分子对接分析表明,甲磺酸卡莫司他及其结构类似物那法莫司他与TMPRSS2催化三联体中存在的His296和Ser441残基强烈相互作用,而BHH与Ala386以及其他残基结合。比较分子动力学模拟揭示了所有对接复合物的稳定行为。MM-PBSA计算还表明,与那法莫司他和BHH相比,甲磺酸卡莫司他与TMPRSS2活性位点残基的结合更强。因此,这些结构信息可能有助于理解TMPRSS2抑制的机制,这可能有助于设计新的先导化合物,以防止SARS冠状病毒2进入人体细胞。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2067/8152215/71c60711ff2c/gr1_lrg.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验