Suppr超能文献

无监督基于逻辑的机制推理在网络驱动的生物过程中的应用。

Unsupervised logic-based mechanism inference for network-driven biological processes.

机构信息

Department of Biochemistry, University of Innsbruck, Innsbruck, Austria.

Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America.

出版信息

PLoS Comput Biol. 2021 Jun 2;17(6):e1009035. doi: 10.1371/journal.pcbi.1009035. eCollection 2021 Jun.

Abstract

Modern analytical techniques enable researchers to collect data about cellular states, before and after perturbations. These states can be characterized using analytical techniques, but the inference of regulatory interactions that explain and predict changes in these states remains a challenge. Here we present a generalizable, unsupervised approach to generate parameter-free, logic-based models of cellular processes, described by multiple discrete states. Our algorithm employs a Hamming-distance based approach to formulate, test, and identify optimized logic rules that link two states. Our approach comprises two steps. First, a model with no prior knowledge except for the mapping between initial and attractor states is built. We then employ biological constraints to improve model fidelity. Our algorithm automatically recovers the relevant dynamics for the explored models and recapitulates key aspects of the biochemical species concentration dynamics in the original model. We present the advantages and limitations of our work and discuss how our approach could be used to infer logic-based mechanisms of signaling, gene-regulatory, or other input-output processes describable by the Boolean formalism.

摘要

现代分析技术使研究人员能够在细胞状态发生变化之前和之后收集有关细胞状态的数据。这些状态可以使用分析技术进行表征,但推断出可以解释和预测这些状态变化的调控相互作用仍然是一个挑战。在这里,我们提出了一种可推广的、无监督的方法,用于生成由多个离散状态描述的无参数、基于逻辑的细胞过程模型。我们的算法采用基于汉明距离的方法来制定、测试和识别连接两个状态的优化逻辑规则。我们的方法包括两个步骤。首先,构建一个除了初始状态和吸引子状态之间的映射之外没有先验知识的模型。然后,我们利用生物学约束来提高模型的保真度。我们的算法自动恢复了所探索模型的相关动态,并再现了原始模型中生化物质浓度动态的关键方面。我们介绍了我们工作的优点和局限性,并讨论了我们的方法如何用于推断可通过布尔形式主义描述的信号、基因调控或其他输入-输出过程的基于逻辑的机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d93/8202945/9c08555bf305/pcbi.1009035.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验