School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China.
Center for Molecular Design and Biomimetics, The Biodesign Institute, School of Molecular Sciences, Arizona State University, Tempe, Arizona 85281, United States.
J Am Chem Soc. 2021 Jun 16;143(23):8639-8646. doi: 10.1021/jacs.1c00363. Epub 2021 Jun 3.
Metal nanostructures of chiral geometry interacting with light via surface plasmon resonances can produce tailorable optical activity with their structural alterations. However, bottom-up fabrication of arbitrary chiral metal nanostructures with precise size and morphology remains a synthetic challenge. Here we develop a DNA origami-enabled aqueous solution metallization strategy to prescribe the chirality of silver nanostructures in three dimensions. We find that diamine silver(I) complexes coordinate with the bases of prescribed single-stranded protruding clustered DNA (pcDNA) on DNA origami via synergetic interactions including coordination, hydrogen bonds, and ion-π interaction, which induce site-specific pcDNA condensation and local enrichment of silver precursors that lowers the activation energy for nucleation. Using tubular DNA origami-based metallization, we obtain helical silver patterns up to a micrometer in length with well-defined chirality and pitches. We further demonstrate tailorable plasmonic optical activity of metallized chiral silver nanostructures. This method opens new pathways to synthesize programmable inorganic materials with arbitrary morphology and chirality.
手性金属纳米结构通过表面等离激元共振与光相互作用,可以通过结构改变产生可调节的旋光性。然而,具有精确尺寸和形态的任意手性金属纳米结构的自下而上制造仍然是一个合成挑战。在这里,我们开发了一种基于 DNA 折纸的水溶液金属化策略,以在三维空间中规定银纳米结构的手性。我们发现,二胺银(I)配合物通过协同作用(包括配位、氢键和离子-π 相互作用)与 DNA 折纸上单链突出簇状 DNA(pcDNA)的碱基结合,这会诱导 pcDNA 的特异性缩合和银前体的局部富集,从而降低成核的活化能。使用基于管状 DNA 折纸的金属化,我们获得了长达一微米的具有明确手性和螺距的螺旋银图案。我们进一步证明了金属化手性银纳米结构的可调节等离子体光学活性。该方法为合成具有任意形态和手性的可编程无机材料开辟了新途径。