School of Information Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong District, Shanghai, 201210, China.
Molecular Oncology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, Manchester, UK.
BMC Bioinformatics. 2021 Jun 2;22(Suppl 6):139. doi: 10.1186/s12859-021-04022-w.
Recent advances in simultaneous measurement of RNA and protein abundances at single-cell level provide a unique opportunity to predict protein abundance from scRNA-seq data using machine learning models. However, existing machine learning methods have not considered relationship among the proteins sufficiently.
We formulate this task in a multi-label prediction framework where multiple proteins are linked to each other at the single-cell level. Then, we propose a novel method for single-cell RNA to protein prediction named PIKE-R2P, which incorporates protein-protein interactions (PPI) and prior knowledge embedding into a graph neural network. Compared with existing methods, PIKE-R2P could significantly improve prediction performance in terms of smaller errors and higher correlations with the gold standard measurements.
The superior performance of PIKE-R2P indicates that adding the prior knowledge of PPI to graph neural networks can be a powerful strategy for cross-modality prediction of protein abundances at the single-cell level.
最近在单细胞水平上同时测量 RNA 和蛋白质丰度的进展为使用机器学习模型从 scRNA-seq 数据中预测蛋白质丰度提供了独特的机会。然而,现有的机器学习方法并没有充分考虑蛋白质之间的关系。
我们将这项任务制定在一个多标签预测框架中,其中多个蛋白质在单细胞水平上相互关联。然后,我们提出了一种名为 PIKE-R2P 的单细胞 RNA 到蛋白质预测的新方法,该方法将蛋白质-蛋白质相互作用 (PPI) 和先验知识嵌入到图神经网络中。与现有方法相比,PIKE-R2P 可以显著提高预测性能,误差更小,与金标准测量的相关性更高。
PIKE-R2P 的优越性能表明,将 PPI 的先验知识添加到图神经网络中可以成为单细胞水平上跨模态预测蛋白质丰度的一种强大策略。