线粒体 NCLX 的异常活动与突触传递受损有关,并与智力迟钝有关。

Aberrant activity of mitochondrial NCLX is linked to impaired synaptic transmission and is associated with mental retardation.

机构信息

Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.

Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel.

出版信息

Commun Biol. 2021 Jun 2;4(1):666. doi: 10.1038/s42003-021-02114-0.

Abstract

Calcium dynamics control synaptic transmission. Calcium triggers synaptic vesicle fusion, determines release probability, modulates vesicle recycling, participates in long-term plasticity and regulates cellular metabolism. Mitochondria, the main source of cellular energy, serve as calcium signaling hubs. Mitochondrial calcium transients are primarily determined by the balance between calcium influx, mediated by the mitochondrial calcium uniporter (MCU), and calcium efflux through the sodium/lithium/calcium exchanger (NCLX). We identified a human recessive missense SLC8B1 variant that impairs NCLX activity and is associated with severe mental retardation. On this basis, we examined the effect of deleting NCLX in mice on mitochondrial and synaptic calcium homeostasis, synaptic activity, and plasticity. Neuronal mitochondria exhibited basal calcium overload, membrane depolarization, and a reduction in the amplitude and rate of calcium influx and efflux. We observed smaller cytoplasmic calcium transients in the presynaptic terminals of NCLX-KO neurons, leading to a lower probability of release and weaker transmission. In agreement, synaptic facilitation in NCLX-KO hippocampal slices was enhanced. Importantly, deletion of NCLX abolished long term potentiation of Schaffer collateral synapses. Our results show that NCLX controls presynaptic calcium transients that are crucial for defining synaptic strength as well as short- and long-term plasticity, key elements of learning and memory processes.

摘要

钙动力学控制突触传递。钙触发突触囊泡融合,决定释放概率,调节囊泡循环,参与长时程可塑性,并调节细胞代谢。线粒体是细胞能量的主要来源,作为钙信号枢纽。线粒体钙瞬变主要取决于钙内流的平衡,由线粒体钙单向转运蛋白(MCU)介导,以及通过钠/锂/钙交换器(NCLX)的钙外排。我们发现了一种人类隐性错义 SLC8B1 变异体,该变异体损害了 NCLX 的活性,并与严重智力迟钝有关。在此基础上,我们研究了在小鼠中删除 NCLX 对线粒体和突触钙稳态、突触活性和可塑性的影响。神经元线粒体表现出基础钙超载、膜去极化以及钙内流和外流速率和幅度降低。我们观察到 NCLX-KO 神经元的突触前末梢中的细胞质钙瞬变小,导致释放概率降低和传递减弱。一致地,NCLX-KO 海马切片中的突触易化增强。重要的是,删除 NCLX 消除了 Schaffer 侧枝突触的长时程增强。我们的结果表明,NCLX 控制着突触前钙瞬变,这对于定义突触强度以及短期和长期可塑性至关重要,而短期和长期可塑性是学习和记忆过程的关键要素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aab1/8172942/77118acc832f/42003_2021_2114_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索