Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, New York, NY, USA.
Advanced Materials Laboratory, Samsung Semiconductor, Inc., Cambridge, MA, USA.
Nature. 2021 Jun;594(7861):51-56. doi: 10.1038/s41586-021-03518-y. Epub 2021 Jun 2.
In perovskite solar cells, doped organic semiconductors are often used as charge-extraction interlayers situated between the photoactive layer and the electrodes. The π-conjugated small molecule 2,2',7,7'-tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9-spirobifluorene (spiro-OMeTAD) is the most frequently used semiconductor in the hole-conducting layer, and its electrical properties considerably affect the charge collection efficiencies of the solar cell. To enhance the electrical conductivity of spiro-OMeTAD, lithium bis(trifluoromethane)sulfonimide (LiTFSI) is typically used in a doping process, which is conventionally initiated by exposing spiro-OMeTAD:LiTFSI blend films to air and light for several hours. This process, in which oxygen acts as the p-type dopant, is time-intensive and largely depends on ambient conditions, and thus hinders the commercialization of perovskite solar cells. Here we report a fast and reproducible doping method that involves bubbling a spiro-OMeTAD:LiTFSI solution with CO under ultraviolet light. CO obtains electrons from photoexcited spiro-OMeTAD, rapidly promoting its p-type doping and resulting in the precipitation of carbonates. The CO-treated interlayer exhibits approximately 100 times higher conductivity than a pristine film while realizing stable, high-efficiency perovskite solar cells without any post-treatments. We also show that this method can be used to dope π-conjugated polymers.
在钙钛矿太阳能电池中,通常将掺杂有机半导体用作位于光活性层和电极之间的电荷提取界面层。具有π共轭的小分子 2,2',7,7'-四[N,N-二(4-甲氧基苯基)氨基]-9,9-螺二芴(螺-OMeTAD)是空穴传输层中最常用的半导体,其电性能对太阳能电池的电荷收集效率有很大影响。为了提高 spiro-OMeTAD 的电导率,通常在掺杂过程中使用双(三氟甲烷)磺酰亚胺锂(LiTFSI),这一过程通常是通过将 spiro-OMeTAD:LiTFSI 混合物薄膜暴露在空气中并光照数小时来引发。这个过程中,氧气充当 p 型掺杂剂,过程耗时且在很大程度上取决于环境条件,因此阻碍了钙钛矿太阳能电池的商业化。在这里,我们报告了一种快速且可重复的掺杂方法,涉及在紫外光下用 CO 对 spiro-OMeTAD:LiTFSI 溶液进行鼓泡。CO 从光激发的 spiro-OMeTAD 中获得电子,迅速促进其 p 型掺杂,并导致碳酸盐的沉淀。与原始薄膜相比,CO 处理的界面层的电导率大约提高了 100 倍,同时实现了稳定、高效的钙钛矿太阳能电池,无需任何后处理。我们还表明,该方法可用于掺杂π共轭聚合物。