Jensen Zach, Kwon Soonhyoung, Schwalbe-Koda Daniel, Paris Cecilia, Gómez-Bombarelli Rafael, Román-Leshkov Yuriy, Corma Avelino, Moliner Manuel, Olivetti Elsa A
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.
Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.
ACS Cent Sci. 2021 May 26;7(5):858-867. doi: 10.1021/acscentsci.1c00024. Epub 2021 Apr 16.
Organic structure directing agents (OSDAs) play a crucial role in the synthesis of micro- and mesoporous materials especially in the case of zeolites. Despite the wide use of OSDAs, their interaction with zeolite frameworks is poorly understood, with researchers relying on synthesis heuristics or computationally expensive techniques to predict whether an organic molecule can act as an OSDA for a certain zeolite. In this paper, we undertake a data-driven approach to unearth generalized OSDA-zeolite relationships using a comprehensive database comprising of 5,663 synthesis routes for porous materials. To generate this comprehensive database, we use natural language processing and text mining techniques to extract OSDAs, zeolite phases, and gel chemistry from the scientific literature published between 1966 and 2020. Through structural featurization of the OSDAs using weighted holistic invariant molecular (WHIM) descriptors, we relate OSDAs described in the literature to different types of cage-based, small-pore zeolites. Lastly, we adapt a generative neural network capable of suggesting new molecules as potential OSDAs for a given zeolite structure and gel chemistry. We apply this model to CHA and SFW zeolites generating several alternative OSDA candidates to those currently used in practice. These molecules are further vetted with molecular mechanics simulations to show the model generates physically meaningful predictions. Our model can automatically explore the OSDA space, reducing the amount of simulation or experimentation needed to find new OSDA candidates.
有机结构导向剂(OSDAs)在微孔和介孔材料的合成中起着至关重要的作用,尤其是在沸石合成方面。尽管OSDAs被广泛使用,但它们与沸石骨架的相互作用却鲜为人知,研究人员只能依靠合成经验法则或计算成本高昂的技术来预测有机分子是否能作为特定沸石的OSDA。在本文中,我们采用数据驱动的方法,利用一个包含5663条多孔材料合成路线的综合数据库,挖掘通用的OSDA-沸石关系。为了生成这个综合数据库,我们使用自然语言处理和文本挖掘技术,从1966年至2020年发表的科学文献中提取OSDAs、沸石相和凝胶化学信息。通过使用加权整体不变分子(WHIM)描述符对OSDAs进行结构特征化,我们将文献中描述的OSDAs与不同类型的基于笼状的小孔沸石联系起来。最后,我们采用一种生成神经网络,能够为给定的沸石结构和凝胶化学建议新的分子作为潜在的OSDA。我们将该模型应用于CHA和SFW沸石,生成了几种目前实际使用的OSDA候选物的替代物。这些分子通过分子力学模拟进一步审核,以表明该模型生成了具有物理意义的预测。我们的模型可以自动探索OSDA空间,减少寻找新的OSDA候选物所需的模拟或实验量。