Department of Electrical Engineering, Pennsylvania State University, University Park, PA 16802, United States of America.
Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, United States of America.
Nanotechnology. 2021 Jun 3;32(34). doi: 10.1088/1361-6528/ac027f.
Controlled molecular transport and separation is of significant importance in various applications. In this work, we presented a novel concept of nanofluidic molecular charge-coupled device (CCD) for controlled DNA transport and separation. By leveraging the unique field-effect coupling in nanofluidic systems, the nanofluidic molecular CCD aims to store charged biomolecules such as DNAs in discrete regions in nanochannels and transfer and separate these biomolecules as a charge packet in a bucket brigade fashion. We developed a quantitative model to capture the impact of nanochannel surface charge, gating voltage and frequency, molecule diffusivity, and gating electrode geometry on the transport and separation efficiency. We studied the synergistic effects of these factors to guide the device design and optimize the DNA transport and separation in a nanofluidic CCD. The findings in this study provided insight into the rational design and implementation of the nanofluidic molecular CCD.
控制分子的输运和分离在各种应用中具有重要意义。在这项工作中,我们提出了一种新颖的纳米流体分子电荷耦合器件(CCD)概念,用于控制 DNA 的输运和分离。通过利用纳米流体系统中的独特场效应耦合,纳米流体分子 CCD 旨在将带电荷的生物分子(如 DNA)存储在纳米通道中的离散区域中,并以桶式传递的方式转移和分离这些生物分子作为一个电荷包。我们开发了一个定量模型来捕捉纳米通道表面电荷、门控电压和频率、分子扩散率以及门控电极几何形状对输运和分离效率的影响。我们研究了这些因素的协同作用,以指导器件设计并优化纳米流体 CCD 中的 DNA 输运和分离。这项研究的结果为纳米流体分子 CCD 的合理设计和实现提供了深入的了解。