Suppr超能文献

基于深度迁移学习的活体共聚焦显微镜图像角膜炎症自动评估框架。

A deep transfer learning framework for the automated assessment of corneal inflammation on in vivo confocal microscopy images.

机构信息

Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology, Ophthalmology Department, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China.

China-ASEAN Information Harbor, Nanning, Guangxi, China.

出版信息

PLoS One. 2021 Jun 3;16(6):e0252653. doi: 10.1371/journal.pone.0252653. eCollection 2021.

Abstract

PURPOSE

Infiltration of activated dendritic cells and inflammatory cells in cornea represents an important marker for defining corneal inflammation. Deep transfer learning has presented a promising potential and is gaining more importance in computer assisted diagnosis. This study aimed to develop deep transfer learning models for automatic detection of activated dendritic cells and inflammatory cells using in vivo confocal microscopy images.

METHODS

A total of 3453 images was used to train the models. External validation was performed on an independent test set of 558 images. A ground-truth label was assigned to each image by a panel of cornea specialists. We constructed a deep transfer learning network that consisted of a pre-trained network and an adaptation layer. In this work, five pre-trained networks were considered, namely VGG-16, ResNet-101, Inception V3, Xception, and Inception-ResNet V2. The performance of each transfer network was evaluated by calculating the area under the curve (AUC) of receiver operating characteristic, accuracy, sensitivity, specificity, and G mean.

RESULTS

The best performance was achieved by Inception-ResNet V2 transfer model. In the validation set, the best transfer system achieved an AUC of 0.9646 (P<0.001) in identifying activated dendritic cells (accuracy, 0.9319; sensitivity, 0.8171; specificity, 0.9517; and G mean, 0.8872), and 0.9901 (P<0.001) in identifying inflammatory cells (accuracy, 0.9767; sensitivity, 0.9174; specificity, 0.9931; and G mean, 0.9545).

CONCLUSIONS

The deep transfer learning models provide a completely automated analysis of corneal inflammatory cellular components with high accuracy. The implementation of such models would greatly benefit the management of corneal diseases and reduce workloads for ophthalmologists.

摘要

目的

角膜中活化树突状细胞和炎症细胞的浸润是定义角膜炎症的重要标志物。深度迁移学习在计算机辅助诊断中具有广阔的应用前景,受到越来越多的关注。本研究旨在利用活体共聚焦显微镜图像开发深度迁移学习模型,实现对活化树突状细胞和炎症细胞的自动检测。

方法

本研究共使用了 3453 张图像进行模型训练,使用 558 张独立测试图像进行外部验证。由一组角膜专家对每张图像进行标注。我们构建了一个深度迁移学习网络,该网络由一个预训练网络和一个适配层组成。在这项工作中,我们考虑了五个预训练网络,分别是 VGG-16、ResNet-101、Inception V3、Xception 和 Inception-ResNet V2。通过计算接收者操作特征曲线(ROC)下面积(AUC)、准确性、敏感性、特异性和 G 均值,评估每个迁移网络的性能。

结果

Inception-ResNet V2 迁移模型的性能最佳。在验证集上,最佳的迁移系统在识别活化树突状细胞时的 AUC 为 0.9646(P<0.001)(准确性为 0.9319、敏感性为 0.8171、特异性为 0.9517、G 均值为 0.8872),在识别炎症细胞时的 AUC 为 0.9901(P<0.001)(准确性为 0.9767、敏感性为 0.9174、特异性为 0.9931、G 均值为 0.9545)。

结论

深度迁移学习模型能够实现对角膜炎症细胞成分的高精度全自动分析。该模型的实施将极大地有益于角膜疾病的管理,并减轻眼科医生的工作负担。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9890/8174724/219cbabb54e3/pone.0252653.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验