Suppr超能文献

将单臂研究纳入随机对照试验的荟萃分析:一项模拟研究。

Incorporating single-arm studies in meta-analysis of randomised controlled trials: a simulation study.

机构信息

Biostatistics Research Group, Department of Health Sciences, University of Leicester, Leicester, UK.

Centre for Health Economics, University of York, York, UK.

出版信息

BMC Med Res Methodol. 2021 Jun 3;21(1):114. doi: 10.1186/s12874-021-01301-1.

Abstract

BACKGROUND

Use of real world data (RWD) from non-randomised studies (e.g. single-arm studies) is increasingly being explored to overcome issues associated with data from randomised controlled trials (RCTs). We aimed to compare methods for pairwise meta-analysis of RCTs and single-arm studies using aggregate data, via a simulation study and application to an illustrative example.

METHODS

We considered contrast-based methods proposed by Begg & Pilote (1991) and arm-based methods by Zhang et al (2019). We performed a simulation study with scenarios varying (i) the proportion of RCTs and single-arm studies in the synthesis (ii) the magnitude of bias, and (iii) between-study heterogeneity. We also applied methods to data from a published health technology assessment (HTA), including three RCTs and 11 single-arm studies.

RESULTS

Our simulation study showed that the hierarchical power and commensurate prior methods by Zhang et al provided a consistent reduction in uncertainty, whilst maintaining over-coverage and small error in scenarios where there was limited RCT data, bias and differences in between-study heterogeneity between the two sets of data. The contrast-based methods provided a reduction in uncertainty, but performed worse in terms of coverage and error, unless there was no marked difference in heterogeneity between the two sets of data.

CONCLUSIONS

The hierarchical power and commensurate prior methods provide the most robust approach to synthesising aggregate data from RCTs and single-arm studies, balancing the need to account for bias and differences in between-study heterogeneity, whilst reducing uncertainty in estimates. This work was restricted to considering a pairwise meta-analysis using aggregate data.

摘要

背景

越来越多地探索使用来自非随机研究(例如单臂研究)的真实世界数据(RWD)来克服与随机对照试验(RCT)数据相关的问题。我们旨在通过模拟研究和应用于一个说明性示例来比较使用汇总数据进行 RCT 和单臂研究的成对荟萃分析方法。

方法

我们考虑了 Begg 和 Pilote(1991)提出的基于对比的方法和 Zhang 等人(2019)提出的基于手臂的方法。我们进行了一项模拟研究,研究场景包括(i)综合研究中 RCT 和单臂研究的比例,(ii)偏倚的大小,以及(iii)研究间异质性。我们还将方法应用于已发表的健康技术评估(HTA)数据,包括三项 RCT 和 11 项单臂研究。

结果

我们的模拟研究表明,Zhang 等人提出的分层功效和相称先验方法在存在有限 RCT 数据、偏倚和两组数据之间研究异质性存在差异的情况下,通过保持覆盖范围和小误差,为减少不确定性提供了一致的方法。基于对比的方法提供了不确定性的减少,但在覆盖范围和误差方面表现不佳,除非两组数据之间的异质性没有明显差异。

结论

分层功效和相称先验方法为从 RCT 和单臂研究中汇总数据提供了最稳健的方法,平衡了需要考虑偏倚和研究间异质性差异的需求,同时降低了估计的不确定性。这项工作仅限于考虑使用汇总数据进行成对荟萃分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0bd7/8176581/5ebbd680e78f/12874_2021_1301_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验