Suppr超能文献

用于定量预测脑-血浆和脑脊髓液-血浆未结合浓度比的大鼠、猴子和人类中枢神经系统稳态药物处置模型的转化。

Translational CNS Steady-State Drug Disposition Model in Rats, Monkeys, and Humans for Quantitative Prediction of Brain-to-Plasma and Cerebrospinal Fluid-to-Plasma Unbound Concentration Ratios.

机构信息

Global DMPK, Preclinical and Translational Sciences, Research, Takeda Pharmaceutical Company Limited, Shonan Health Innovation Park (iPark), 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa, 251-8555, Japan.

出版信息

AAPS J. 2021 Jun 3;23(4):81. doi: 10.1208/s12248-021-00609-6.

Abstract

Capturing unbound drug exposure in the brain is crucial to evaluate pharmacological effects for drugs acting on the central nervous system. However, to date, there are no reports of validated prediction models to determine the brain-to-plasma unbound concentration ratio (K) as well as the cerebrospinal fluid (CSF)-to-plasma unbound concentration ratio (K) between humans and other species. Here, we developed a translational CNS steady-state drug disposition model to predict K and K across rats, monkeys, and humans by estimating the relative activity factors (RAF) for MDR1 and BCRP in addition to scaling factors (γ and σ) using the molecular weight, logD, CSF bulk flow, and in vitro transport activities of these transporters. In this study, 68, 26, and 28 compounds were tested in the rat, monkey, and human models, respectively. Both the predicted K and K values were within the 3-fold range of the observed values (71, 73, and 79%; 79, 88, and 78% of the compounds, respectively), indicating successful prediction of K and K in the three species. The overall predictivity of the RAF approach is consistent with that of the relative expression factor (REF) approach. As the established model can predict K and K using only in vitro and physicochemical data, this model would help avoid ethical issues related to animal use and improve CNS drug discovery workflow.

摘要

在中枢神经系统(CNS)药物作用中,捕获未结合的脑内药物暴露对于评估药理作用至关重要。然而,迄今为止,尚无关于验证预测模型的报道,无法确定人和其他物种的脑-血浆未结合浓度比(K)以及脑脊液(CSF)-血浆未结合浓度比(K)。在此,我们开发了一种转化性 CNS 稳态药物处置模型,通过估计多药耐药蛋白 1(MDR1)和乳腺癌耐药蛋白(BCRP)的相对活性因子(RAF),以及使用这些转运蛋白的分子量、logD、CSF 总体流动和体外转运活性对缩放因子(γ和σ)进行估算,从而预测大鼠、猴子和人类之间的 K 和 K。在这项研究中,分别在大鼠、猴子和人类模型中测试了 68、26 和 28 种化合物。预测的 K 和 K 值均在观察值的 3 倍范围内(分别为 71%、73%和 79%;79%、88%和 78%的化合物),表明在三种物种中成功预测了 K 和 K。RAF 方法的总体预测能力与相对表达因子(REF)方法一致。由于该建立的模型仅使用体外和物理化学数据即可预测 K 和 K,因此该模型将有助于避免与动物使用相关的伦理问题,并改善 CNS 药物发现工作流程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1fd/8175309/c8251a2fb7be/12248_2021_609_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验