Suppr超能文献

基于ZnO纳米棒气体传感器的挥发性有机化合物宽带介电谱检测

Broadband dielectric spectroscopic detection of volatile organic compounds with ZnO nanorod gas sensors.

作者信息

Amoah Papa K, Lin Pengtao, Baumgart Helmut, Franklin Rhonda R, Obeng Yaw S

机构信息

Department of Electrical and Computer Engineering, Old Dominion University, Norfolk VA 23529, United States of America.

Applied Research Center at Thomas Jefferson National Accelerator Laboratories, 12050 Jefferson Avenue, Suite 721, Newport News, VA 23606, United States of America.

出版信息

J Phys D Appl Phys. 2021;54(13). doi: 10.1088/1361-6463/abd3ce.

Abstract

Metal-oxide (MO) semiconductor gas sensors based on chemical resistivity necessarily involve making electrical contacts to the sensing materials. These contacts are imperfect and introduce errors into the measurements. In this paper, we demonstrate the feasibility of using contactless broadband dielectric spectroscopy (BDS)-based metrology in gas monitoring that avoids distortions in the reported resistivity values due to probe use, and parasitic errors (i.e. tool-measurand interactions). Specifically, we show how radio frequency propagation characteristics can be applied to study discrete processes on MO sensing material, such as zinc oxide (i.e. ZnO) surfaces, when exposed to a redox-active gas. Specifically, we have used BDS to investigate the initial oxidization of ZnO gas sensing material in air at temperatures below 200 °C, and to show that the technique affords new mechanistic insights that are inaccessible with the traditional resistance-based measurements.

摘要

基于化学电阻率的金属氧化物(MO)半导体气体传感器必然涉及与传感材料进行电接触。这些接触并不完美,会在测量中引入误差。在本文中,我们证明了在气体监测中使用基于非接触式宽带介电谱(BDS)的计量方法的可行性,该方法可避免因使用探针以及寄生误差(即工具 - 被测物相互作用)而导致报告的电阻率值出现失真。具体而言,我们展示了射频传播特性如何应用于研究MO传感材料(如氧化锌,即ZnO)表面在暴露于氧化还原活性气体时的离散过程。具体来说,我们使用BDS研究了ZnO气体传感材料在低于200°C的空气中的初始氧化过程,并表明该技术提供了传统基于电阻的测量无法获得的新的机理见解。

相似文献

3
Broadband Microwave Signal Dissipation in Nanostructured Copper Oxide at Air-Film Interface.
Electroanalysis. 2020 Sep 17;32(12). doi: 10.1002/elan.202060246.
4
Heterostructured NiO/ZnO Nanorod Arrays with Significantly Enhanced HS Sensing Performance.
Nanomaterials (Basel). 2019 Jun 20;9(6):900. doi: 10.3390/nano9060900.
5
Bacteriorhodopsin-ZnO hybrid as a potential sensing element for low-temperature detection of ethanol vapour.
Beilstein J Nanotechnol. 2016 Apr 4;7:501-10. doi: 10.3762/bjnano.7.44. eCollection 2016.
7
Enhanced Acetone Sensing Properties Based on Au-Pd Decorated ZnO Nanorod Gas Sensor.
Sensors (Basel). 2024 Mar 26;24(7):2110. doi: 10.3390/s24072110.
9
Observation of Switchable Dual-Conductive Channels and Related Nitric Oxide Gas-Sensing Properties in the N-rGO/ZnO Heterogeneous Structure.
ACS Appl Mater Interfaces. 2020 Apr 29;12(17):19755-19767. doi: 10.1021/acsami.9b20776. Epub 2020 Apr 14.
10
Planning Implications Related to Sterilization-Sensitive Science Investigations Associated with Mars Sample Return (MSR).
Astrobiology. 2022 Jun;22(S1):S112-S164. doi: 10.1089/AST.2021.0113. Epub 2022 May 19.

本文引用的文献

1
Synergy of nano-ZnO and 3D-graphene foam electrodes for asymmetric supercapacitor devices.
Nanoscale. 2020 Jun 28;12(24):12790-12800. doi: 10.1039/d0nr02028a. Epub 2020 May 6.
2
Evolution of native defects in ZnO nanorods irradiated with hydrogen ion.
Sci Rep. 2019 Nov 22;9(1):17393. doi: 10.1038/s41598-019-53951-3.
3
Metrology for the next generation of semiconductor devices.
Nat Electron. 2018;1. doi: 10.1038/s41928-018-0150-9.
4
Microwave Monitoring of Atmospheric Corrosion of Interconnects.
ECS J Solid State Sci Technol. 2018;7. doi: 10.1149/2.0181812jss.
6
Structural, Optical and Electrical Properties of Zinc Oxide Layers Produced by Pulsed Laser Deposition Method.
Nanoscale Res Lett. 2017 Dec;12(1):253. doi: 10.1186/s11671-017-2033-9. Epub 2017 Apr 4.
7
Dopant profiling and surface analysis of silicon nanowires using capacitance-voltage measurements.
Nat Nanotechnol. 2009 May;4(5):311-4. doi: 10.1038/nnano.2009.43. Epub 2009 Mar 15.
8
Defects in ZnO nanorods prepared by a hydrothermal method.
J Phys Chem B. 2006 Oct 26;110(42):20865-71. doi: 10.1021/jp063239w.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验