Amoah Papa K, Lin Pengtao, Baumgart Helmut, Franklin Rhonda R, Obeng Yaw S
Department of Electrical and Computer Engineering, Old Dominion University, Norfolk VA 23529, United States of America.
Applied Research Center at Thomas Jefferson National Accelerator Laboratories, 12050 Jefferson Avenue, Suite 721, Newport News, VA 23606, United States of America.
J Phys D Appl Phys. 2021;54(13). doi: 10.1088/1361-6463/abd3ce.
Metal-oxide (MO) semiconductor gas sensors based on chemical resistivity necessarily involve making electrical contacts to the sensing materials. These contacts are imperfect and introduce errors into the measurements. In this paper, we demonstrate the feasibility of using contactless broadband dielectric spectroscopy (BDS)-based metrology in gas monitoring that avoids distortions in the reported resistivity values due to probe use, and parasitic errors (i.e. tool-measurand interactions). Specifically, we show how radio frequency propagation characteristics can be applied to study discrete processes on MO sensing material, such as zinc oxide (i.e. ZnO) surfaces, when exposed to a redox-active gas. Specifically, we have used BDS to investigate the initial oxidization of ZnO gas sensing material in air at temperatures below 200 °C, and to show that the technique affords new mechanistic insights that are inaccessible with the traditional resistance-based measurements.
基于化学电阻率的金属氧化物(MO)半导体气体传感器必然涉及与传感材料进行电接触。这些接触并不完美,会在测量中引入误差。在本文中,我们证明了在气体监测中使用基于非接触式宽带介电谱(BDS)的计量方法的可行性,该方法可避免因使用探针以及寄生误差(即工具 - 被测物相互作用)而导致报告的电阻率值出现失真。具体而言,我们展示了射频传播特性如何应用于研究MO传感材料(如氧化锌,即ZnO)表面在暴露于氧化还原活性气体时的离散过程。具体来说,我们使用BDS研究了ZnO气体传感材料在低于200°C的空气中的初始氧化过程,并表明该技术提供了传统基于电阻的测量无法获得的新的机理见解。