Amoah Papa K, Košiček Martin, Perez Jesus, Sunday Christopher E, Moreau Stéphane, Cvelbar Uroš, Obeng Yaw S
Physical Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899.
Jožef Stefan Institute, Ljubljana, Slovenia.
Electroanalysis. 2020 Sep 17;32(12). doi: 10.1002/elan.202060246.
Contactless broadband microwave spectroscopy (a.k.a., broadband dielectric spectroscopy (BDS)) enables the accurate analysis of the electrical and magnetic properties without compromising the kinetic conditions of the experiment. The BDS method is sensitive to the actual electronic structure of species, and it is most relevant to redox reactions involving charge-transfer. In this paper, using BDS, we have studied and characterized the oxidation of a copper layer in a purposely built prototypical 3-D integrated circuit (3D-IC) during cycled high-temperature storage. We show that the microwave signal loss in these devices is attributable to the energy dissipation through the signal's interactions with the copper oxidation product. The results demonstrate that contactless BDS could be leveraged into an excellent metrology for applications that use metal oxide as sensing elements.
非接触式宽带微波光谱法(又称宽带介电谱法(BDS))能够在不影响实验动力学条件的情况下,对电学和磁学性质进行精确分析。BDS方法对物质的实际电子结构敏感,并且与涉及电荷转移的氧化还原反应最为相关。在本文中,我们使用BDS研究并表征了在循环高温存储期间,特意构建的原型三维集成电路(3D-IC)中铜层的氧化情况。我们表明,这些器件中的微波信号损耗归因于信号与铜氧化产物相互作用导致的能量耗散。结果表明,非接触式BDS可用于以金属氧化物作为传感元件的应用中,成为一种出色的计量方法。