Suppr超能文献

注意力引导生成对抗网络在合成CT生成中解决非典型解剖问题。

Attention-Guided Generative Adversarial Network to Address Atypical Anatomy in Synthetic CT Generation.

作者信息

Emami Hajar, Dong Ming, Glide-Hurst Carri K

机构信息

Wayne State University, Department of Computer Science, Detroit, MI 48202, USA.

Henry Ford Health System, Department of Radiation Oncology, Detroit, MI 48202, USA.

出版信息

2020 IEEE 21st Int Conf Inf Reuse Integr Data Sci (2020). 2020 Aug;2020:188-193. doi: 10.1109/iri49571.2020.00034. Epub 2020 Sep 10.

Abstract

Recently, interest in MR-only treatment planning using synthetic CTs (synCTs) has grown rapidly in radiation therapy. However, developing class solutions for medical images that contain atypical anatomy remains a major limitation. In this paper, we propose a novel spatial attention-guided generative adversarial network (attention-GAN) model to generate accurate synCTs using T1-weighted MRI images as the input to address atypical anatomy. Experimental results on fifteen brain cancer patients show that attention-GAN outperformed existing synCT models and achieved an average MAE of 85.223±12.08, 232.41±60.86, 246.38±42.67 Hounsfield units between synCT and CT-SIM across the entire head, bone and air regions, respectively. Qualitative analysis shows that attention-GAN has the ability to use spatially focused areas to better handle outliers, areas with complex anatomy or post-surgical regions, and thus offer strong potential for supporting near real-time MR-only treatment planning.

摘要

最近,在放射治疗中,使用合成CT(synCT)进行仅基于磁共振成像(MR)的治疗计划的关注度迅速增长。然而,为包含非典型解剖结构的医学图像开发分类解决方案仍然是一个主要限制。在本文中,我们提出了一种新颖的空间注意力引导生成对抗网络(注意力生成对抗网络,attention-GAN)模型,以使用T1加权磁共振成像(MRI)图像作为输入来生成准确的synCT,以解决非典型解剖结构问题。对15例脑癌患者的实验结果表明,注意力生成对抗网络(attention-GAN)优于现有的synCT模型,在整个头部、骨骼和空气区域中,synCT与CT-SIM之间的平均绝对误差(MAE)分别为85.223±12.08、232.41±60.86、246.38±42.67亨氏单位。定性分析表明,注意力生成对抗网络(attention-GAN)有能力利用空间聚焦区域更好地处理异常值、解剖结构复杂的区域或术后区域,从而为支持近实时的仅基于MR的治疗计划提供强大潜力。

相似文献

1
Attention-Guided Generative Adversarial Network to Address Atypical Anatomy in Synthetic CT Generation.
2020 IEEE 21st Int Conf Inf Reuse Integr Data Sci (2020). 2020 Aug;2020:188-193. doi: 10.1109/iri49571.2020.00034. Epub 2020 Sep 10.
3
Performance of deep learning synthetic CTs for MR-only brain radiation therapy.
J Appl Clin Med Phys. 2021 Jan;22(1):308-317. doi: 10.1002/acm2.13139. Epub 2021 Jan 7.
4
Deep Learning-Based Synthetic Computed Tomography for Low-Field Brain Magnetic Resonance-Guided Radiation Therapy.
Int J Radiat Oncol Biol Phys. 2025 Mar 1;121(3):832-843. doi: 10.1016/j.ijrobp.2024.09.046. Epub 2024 Oct 1.
5
SC-GAN: Structure-completion generative adversarial network for synthetic CT generation from MR images with truncated anatomy.
Comput Med Imaging Graph. 2024 Apr;113:102353. doi: 10.1016/j.compmedimag.2024.102353. Epub 2024 Feb 10.
7
MRI-only based synthetic CT generation using dense cycle consistent generative adversarial networks.
Med Phys. 2019 Aug;46(8):3565-3581. doi: 10.1002/mp.13617. Epub 2019 Jun 12.
8
Implementation of a novel algorithm for generating synthetic CT images from magnetic resonance imaging data sets for prostate cancer radiation therapy.
Int J Radiat Oncol Biol Phys. 2015 Jan 1;91(1):39-47. doi: 10.1016/j.ijrobp.2014.09.015. Epub 2014 Nov 7.
9
Magnetic Resonance-Based Automatic Air Segmentation for Generation of Synthetic Computed Tomography Scans in the Head Region.
Int J Radiat Oncol Biol Phys. 2015 Nov 1;93(3):497-506. doi: 10.1016/j.ijrobp.2015.07.001. Epub 2015 Jul 9.

引用本文的文献

1
Deep Learning-Based Synthetic Computed Tomography for Low-Field Brain Magnetic Resonance-Guided Radiation Therapy.
Int J Radiat Oncol Biol Phys. 2025 Mar 1;121(3):832-843. doi: 10.1016/j.ijrobp.2024.09.046. Epub 2024 Oct 1.
2
A deep learning approach to remove contrast from contrast-enhanced CT for proton dose calculation.
J Appl Clin Med Phys. 2024 Feb;25(2):e14266. doi: 10.1002/acm2.14266. Epub 2024 Jan 25.
3
Machine Learning for Medical Image Translation: A Systematic Review.
Bioengineering (Basel). 2023 Sep 12;10(9):1078. doi: 10.3390/bioengineering10091078.
4
Performance of deep learning synthetic CTs for MR-only brain radiation therapy.
J Appl Clin Med Phys. 2021 Jan;22(1):308-317. doi: 10.1002/acm2.13139. Epub 2021 Jan 7.

本文引用的文献

1
MR-Only Brain Radiation Therapy: Dosimetric Evaluation of Synthetic CTs Generated by a Dilated Convolutional Neural Network.
Int J Radiat Oncol Biol Phys. 2018 Nov 15;102(4):801-812. doi: 10.1016/j.ijrobp.2018.05.058. Epub 2018 Jun 4.
2
Medical Image Synthesis with Context-Aware Generative Adversarial Networks.
Med Image Comput Comput Assist Interv. 2017 Sep;10435:417-425. doi: 10.1007/978-3-319-66179-7_48. Epub 2017 Sep 4.
4
Estimating CT Image from MRI Data Using 3D Fully Convolutional Networks.
Deep Learn Data Label Med Appl (2016). 2016;2016:170-178. doi: 10.1007/978-3-319-46976-8_18. Epub 2016 Sep 27.
5
MR-based synthetic CT generation using a deep convolutional neural network method.
Med Phys. 2017 Apr;44(4):1408-1419. doi: 10.1002/mp.12155. Epub 2017 Mar 21.
6
A new method for determining the optimal CT threshold for extracting the upper airway.
Dentomaxillofac Radiol. 2013;42(3):26397438. doi: 10.1259/dmfr/26397438. Epub 2012 Jul 27.
7
CT substitute derived from MRI sequences with ultrashort echo time.
Med Phys. 2011 May;38(5):2708-14. doi: 10.1118/1.3578928.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验