Emami Hajar, Dong Ming, Glide-Hurst Carri K
Wayne State University, Department of Computer Science, Detroit, MI 48202, USA.
Henry Ford Health System, Department of Radiation Oncology, Detroit, MI 48202, USA.
2020 IEEE 21st Int Conf Inf Reuse Integr Data Sci (2020). 2020 Aug;2020:188-193. doi: 10.1109/iri49571.2020.00034. Epub 2020 Sep 10.
Recently, interest in MR-only treatment planning using synthetic CTs (synCTs) has grown rapidly in radiation therapy. However, developing class solutions for medical images that contain atypical anatomy remains a major limitation. In this paper, we propose a novel spatial attention-guided generative adversarial network (attention-GAN) model to generate accurate synCTs using T1-weighted MRI images as the input to address atypical anatomy. Experimental results on fifteen brain cancer patients show that attention-GAN outperformed existing synCT models and achieved an average MAE of 85.223±12.08, 232.41±60.86, 246.38±42.67 Hounsfield units between synCT and CT-SIM across the entire head, bone and air regions, respectively. Qualitative analysis shows that attention-GAN has the ability to use spatially focused areas to better handle outliers, areas with complex anatomy or post-surgical regions, and thus offer strong potential for supporting near real-time MR-only treatment planning.
最近,在放射治疗中,使用合成CT(synCT)进行仅基于磁共振成像(MR)的治疗计划的关注度迅速增长。然而,为包含非典型解剖结构的医学图像开发分类解决方案仍然是一个主要限制。在本文中,我们提出了一种新颖的空间注意力引导生成对抗网络(注意力生成对抗网络,attention-GAN)模型,以使用T1加权磁共振成像(MRI)图像作为输入来生成准确的synCT,以解决非典型解剖结构问题。对15例脑癌患者的实验结果表明,注意力生成对抗网络(attention-GAN)优于现有的synCT模型,在整个头部、骨骼和空气区域中,synCT与CT-SIM之间的平均绝对误差(MAE)分别为85.223±12.08、232.41±60.86、246.38±42.67亨氏单位。定性分析表明,注意力生成对抗网络(attention-GAN)有能力利用空间聚焦区域更好地处理异常值、解剖结构复杂的区域或术后区域,从而为支持近实时的仅基于MR的治疗计划提供强大潜力。