Suppr超能文献

基于深度学习的低场脑磁共振引导放射治疗的合成计算机断层扫描

Deep Learning-Based Synthetic Computed Tomography for Low-Field Brain Magnetic Resonance-Guided Radiation Therapy.

作者信息

Yan Yuhao, Kim Joshua P, Nejad-Davarani Siamak P, Dong Ming, Hurst Newton J, Zhao Jiwei, Glide-Hurst Carri K

机构信息

Department of Human Oncology, University of Wisconsin-Madison, Madison, Wisconsin; Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin.

Department of Radiation Oncology, Henry Ford Health, Detroit, Michigan.

出版信息

Int J Radiat Oncol Biol Phys. 2025 Mar 1;121(3):832-843. doi: 10.1016/j.ijrobp.2024.09.046. Epub 2024 Oct 1.

Abstract

PURPOSE

Magnetic resonance (MR)-guided radiation therapy enables online adaptation to address intra- and interfractional changes. To address the need of high-fidelity synthetic computed tomography (synCT) required for dose calculation, we developed a conditional generative adversarial network for synCT generation from low-field MR imaging in the brain.

METHODS AND MATERIALS

Simulation MR-CT pairs from 12 patients with glioma imaged with a head and neck surface coil and treated on a 0.35T MR-linac were prospectively included to train the model consisting of a 9-block residual network generator and a PatchGAN discriminator. Four-fold cross-validation was implemented. SynCT was quantitatively evaluated against real CT using mean absolute error (MAE), peak signal-to-noise ratio (PSNR), and structural similarity index measure (SSIM). Dose was calculated on synCT applying original treatment plan. Dosimetric performance was evaluated by dose-volume histogram metric comparison and local 3-dimensional gamma analysis. To demonstrate utilization in treatment adaptation, longitudinal synCTs were generated for qualitative evaluation, and 1 offline adaptation case underwent 2 comparative plan evaluations. Secondary validation was conducted with 9 patients on a different MR-linac using a high-resolution brain coil.

RESULTS

Our model generated high-quality synCTs with MAE, PSNR, and SSIM of 70.9 ± 10.4 HU, 28.4 ± 1.5 dB, and 0.87 ± 0.02 within the field of view, respectively. Underrepresented postsurgical anomalies challenged model performance. Nevertheless, excellent dosimetric agreement was observed with the mean difference between real and synCT dose-volume histogram metrics of -0.07 ± 0.29 Gy for target D and within [-0.14, 0.02] Gy for organs at risk. Significant differences were only observed in the right lens D with negligible overall difference (<0.13 Gy). Mean gamma analysis pass rates were 92.2% ± 3.0%, 99.2% ± 0.7%, and 99.9% ± 0.1% at 1%/1 mm, 2%/2 mm, and 3%/3 mm, respectively. Secondary validation yielded no significant differences in synCT performance for whole-brain MAE, PSNR, and SSIM with comparable dosimetric results.

CONCLUSIONS

Our conditional generative adversarial network model generated high-fidelity brain synCTs from low-field MR imaging with excellent dosimetric performance. Secondary validation suggests great promise of implementing synCTs to facilitate robust dose calculation for online adaptive brain MR-guided radiation therapy.

摘要

目的

磁共振(MR)引导的放射治疗能够进行在线调整,以应对分次内和分次间的变化。为满足剂量计算所需的高保真合成计算机断层扫描(synCT)的需求,我们开发了一种条件生成对抗网络,用于从脑部低场MR成像生成synCT。

方法和材料

前瞻性纳入12例使用头颈表面线圈成像并在0.35T MR直线加速器上接受治疗的胶质瘤患者的模拟MR-CT对,以训练由一个9块残差网络生成器和一个PatchGAN鉴别器组成的模型。实施了四折交叉验证。使用平均绝对误差(MAE)、峰值信噪比(PSNR)和结构相似性指数测量(SSIM)对synCT与真实CT进行定量评估。在应用原始治疗计划的synCT上计算剂量。通过剂量体积直方图指标比较和局部三维伽马分析评估剂量学性能。为证明在治疗调整中的应用,生成纵向synCT进行定性评估,并对1例离线调整病例进行2次对比计划评估。使用高分辨率脑线圈在不同的MR直线加速器上对9例患者进行了二次验证。

结果

我们的模型生成了高质量的synCT,视野内MAE、PSNR和SSIM分别为70.9±10.4 HU、28.4±1.5 dB和0.87±0.02。术后异常情况代表性不足对模型性能提出了挑战。尽管如此,观察到剂量学一致性良好,靶区D的真实和synCT剂量体积直方图指标之间的平均差异为-0.07±0.29 Gy,危及器官的差异在[-0.14, 0.02] Gy范围内。仅在右眼晶状体D中观察到显著差异,总体差异可忽略不计(<0.13 Gy)。在1%/1 mm、2%/2 mm和3%/3 mm时,平均伽马分析通过率分别为92.2%±3.0%、99.2%±0.7%和99.9%±0.1%。二次验证显示,全脑MAE、PSNR和SSIM的synCT性能无显著差异,剂量学结果相当。

结论

我们的条件生成对抗网络模型从低场MR成像生成了高保真脑synCT,具有出色的剂量学性能。二次验证表明,实施synCT以促进在线自适应脑MR引导放射治疗的稳健剂量计算具有很大前景。

相似文献

本文引用的文献

3
A Guide to Cross-Validation for Artificial Intelligence in Medical Imaging.医学成像中人工智能的交叉验证指南
Radiol Artif Intell. 2023 May 24;5(4):e220232. doi: 10.1148/ryai.220232. eCollection 2023 Jul.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验