Suppr超能文献

新冠疫情期间的复工率与农民工收入

Work Resumption Rate and Migrant Workers' Income During the COVID-19 Pandemic.

机构信息

College of Economics and Management, Northwest A&F University, Yangling, China.

State Grid Fujian Electric Power Co. Ltd., Fujian, China.

出版信息

Front Public Health. 2021 May 21;9:678934. doi: 10.3389/fpubh.2021.678934. eCollection 2021.

Abstract

The COVID-19 public health crisis has quickly led to an economic crisis, impacting many people and businesses in the world. This study examines how the pandemic affects workforces and workers' income. We quantify the impact of staggered resumption of work, after the coronavirus lockdowns, on the migrant workers' income. Using data on population movements of 366 Chinese cities at the daily level from the Baidu Maps-Migration Big Data Platform and historical data on the average monthly income of migrant workers, we find that the average work resumption rate (WRR) during the period of the Chinese Lantern Festival was 25.25%, which was only 30.67% of that in the same matched lunar calendar period in 2019. We then apply Gray Model First Order One Variable [GM (1, 1)] to predict the monthly income of migrant workers during the period of the COVID-19 pandemic. We show that, if without the influence of the COVID-19 pandemic, the average monthly income of migrant workers in 2020 will be expected to increase by 12% compared with 2019. We further conduct scenario analysis and show that the average monthly income of migrant workers in 2020 under the conservative scenario (COS), medium scenario (MES), and worse scenario (WOS) will be predicted to decrease by 2, 21, and 44%, respectively. Through testing, our prediction error is <5%. Our findings will help policymakers to decide when and how they implement a plan to ease the coronavirus lockdown and related financial support policies.

摘要

COVID-19 公共卫生危机迅速引发经济危机,影响了世界上许多人和企业。本研究考察了大流行如何影响劳动力和工人的收入。我们量化了冠状病毒封锁后复工时间错开对农民工收入的影响。我们利用百度地图-迁徙大数据平台提供的 366 个中国城市的人口流动日度数据和农民工平均月收入的历史数据,发现元宵节期间的平均复工率(WRR)为 25.25%,仅为 2019 年同期农历相同月份的 30.67%。然后,我们应用灰色模型一阶单变量[GM(1,1)]来预测 COVID-19 大流行期间农民工的月收入。我们表明,如果没有 COVID-19 大流行的影响,预计 2020 年农民工的平均月收入将比 2019 年增加 12%。我们进一步进行情景分析,结果表明,在保守情景(COS)、中情景(MES)和较差情景(WOS)下,2020 年农民工的平均月收入预计将分别下降 2%、21%和 44%。经过测试,我们的预测误差<5%。我们的研究结果将有助于决策者决定何时以及如何实施缓解冠状病毒封锁和相关财政支持政策的计划。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/017b/8175901/46e755f6f313/fpubh-09-678934-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验