Suppr超能文献

驱动蛋白-5 通过稳定微管蛋白的晶格竞争构象来促进微管的成核和组装。

Kinesin-5 Promotes Microtubule Nucleation and Assembly by Stabilizing a Lattice-Competent Conformation of Tubulin.

机构信息

Department of Biomedical Engineering and Bioengineering, Pennsylvania State University, University Park, PA 16802, USA.

Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, NY 10461, USA.

出版信息

Curr Biol. 2019 Jul 22;29(14):2259-2269.e4. doi: 10.1016/j.cub.2019.05.075. Epub 2019 Jul 4.

Abstract

Besides sliding apart antiparallel microtubules during spindle elongation, the mitotic kinesin-5, Eg5, promotes microtubule polymerization, emphasizing its importance in mitotic spindle length control. Here, we characterize the Eg5 microtubule polymerase mechanism by assessing motor-induced changes in the longitudinal and lateral tubulin-tubulin bonds that form the microtubule lattice. Isolated Eg5 motor domains promote microtubule nucleation, growth, and stability; thus, crosslinking tubulin by pairs of motor heads is not necessary for polymerase activity. Eg5 binds preferentially to microtubules over free tubulin, which contrasts with microtubule-depolymerizing kinesins that preferentially bind free tubulin over microtubules. Colchicine-like inhibitors that stabilize the bent conformation of tubulin allosterically inhibit Eg5 binding, consistent with a model in which Eg5 induces a curved-to-straight transition in tubulin. Domain swap experiments establish that the family-specific loop11-helix 4 junction, which resides near the nucleotide-sensing switch-II domain, is necessary and sufficient for the polymerase activity of Eg5. Thus, we propose a microtubule polymerase mechanism in which Eg5 at the plus-end promotes a curved-to-straight transition in tubulin that enhances lateral bond formation and thereby promotes microtubule growth and stability. One implication is that regulation of Eg5 motile properties by regulatory proteins or small molecule inhibitors could also have effects on intracellular microtubule dynamics.

摘要

除了在纺锤体伸长过程中使平行的微管分开外,有丝分裂驱动蛋白-5(Eg5)还能促进微管聚合,这突出了其在有丝分裂纺锤体长度控制中的重要性。在这里,我们通过评估形成微管晶格的纵向和横向微管-微管键的变化来描述 Eg5 微管聚合酶机制。分离的 Eg5 运动结构域促进微管的成核、生长和稳定性;因此,通过两个马达头交联微管不是聚合酶活性所必需的。Eg5 优先结合微管而不是游离的微管,这与优先结合游离微管而不是微管的微管解聚驱动蛋白相反。稳定微管的弯曲构象的秋水仙碱样抑制剂会抑制 Eg5 的结合,这与 Eg5 诱导微管中弯曲到直线的转变的模型一致。结构域交换实验表明,位于核苷酸感应开关 II 结构域附近的家族特异性环 11-螺旋 4 连接对于 Eg5 的聚合酶活性是必需且充分的。因此,我们提出了一种微管聚合酶机制,其中位于正极的 Eg5 促进微管中弯曲到直线的转变,从而增强了侧键的形成,从而促进了微管的生长和稳定性。一个含义是,调节蛋白或小分子抑制剂对 Eg5 运动性质的调节也可能对细胞内微管动力学产生影响。

相似文献

2
Kinesin-5 is a microtubule polymerase.驱动蛋白-5是一种微管聚合酶。
Nat Commun. 2015 Oct 6;6:8160. doi: 10.1038/ncomms9160.

引用本文的文献

3
Sliding of antiparallel microtubules drives bipolarization of monoastral spindles.对向微管的滑动驱动单星纺锤体的两极化。
Cytoskeleton (Hoboken). 2024 Feb-Mar;81(2-3):167-183. doi: 10.1002/cm.21800. Epub 2023 Oct 9.
5
Microtubule nucleation for spindle assembly: one molecule at a time.微管成核用于纺锤体组装:一次一个分子。
Trends Biochem Sci. 2023 Sep;48(9):761-775. doi: 10.1016/j.tibs.2023.06.004. Epub 2023 Jul 21.
10
Regulation of microtubule dynamics, mechanics and function through the growing tip.通过生长尖端调节微管动力学、力学和功能。
Nat Rev Mol Cell Biol. 2021 Dec;22(12):777-795. doi: 10.1038/s41580-021-00399-x. Epub 2021 Aug 18.

本文引用的文献

4
Microtubule architecture in vitro and in cells revealed by cryo-electron tomography.体外和细胞中微管结构的冷冻电子断层扫描揭示。
Acta Crystallogr D Struct Biol. 2018 Jun 1;74(Pt 6):572-584. doi: 10.1107/S2059798318001948. Epub 2018 Apr 11.
7
Kinesin expands and stabilizes the GDP-microtubule lattice.驱动蛋白扩展并稳定 GDP-微管晶格。
Nat Nanotechnol. 2018 May;13(5):386-391. doi: 10.1038/s41565-018-0084-4. Epub 2018 Mar 12.
8
Microtubule nucleation: beyond the template.微管成核:超越模板。
Nat Rev Mol Cell Biol. 2017 Nov;18(11):702-710. doi: 10.1038/nrm.2017.75. Epub 2017 Aug 23.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验