Department of Biomedical Engineering and Bioengineering, Pennsylvania State University, University Park, PA 16802, USA.
Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
Curr Biol. 2019 Jul 22;29(14):2259-2269.e4. doi: 10.1016/j.cub.2019.05.075. Epub 2019 Jul 4.
Besides sliding apart antiparallel microtubules during spindle elongation, the mitotic kinesin-5, Eg5, promotes microtubule polymerization, emphasizing its importance in mitotic spindle length control. Here, we characterize the Eg5 microtubule polymerase mechanism by assessing motor-induced changes in the longitudinal and lateral tubulin-tubulin bonds that form the microtubule lattice. Isolated Eg5 motor domains promote microtubule nucleation, growth, and stability; thus, crosslinking tubulin by pairs of motor heads is not necessary for polymerase activity. Eg5 binds preferentially to microtubules over free tubulin, which contrasts with microtubule-depolymerizing kinesins that preferentially bind free tubulin over microtubules. Colchicine-like inhibitors that stabilize the bent conformation of tubulin allosterically inhibit Eg5 binding, consistent with a model in which Eg5 induces a curved-to-straight transition in tubulin. Domain swap experiments establish that the family-specific loop11-helix 4 junction, which resides near the nucleotide-sensing switch-II domain, is necessary and sufficient for the polymerase activity of Eg5. Thus, we propose a microtubule polymerase mechanism in which Eg5 at the plus-end promotes a curved-to-straight transition in tubulin that enhances lateral bond formation and thereby promotes microtubule growth and stability. One implication is that regulation of Eg5 motile properties by regulatory proteins or small molecule inhibitors could also have effects on intracellular microtubule dynamics.
除了在纺锤体伸长过程中使平行的微管分开外,有丝分裂驱动蛋白-5(Eg5)还能促进微管聚合,这突出了其在有丝分裂纺锤体长度控制中的重要性。在这里,我们通过评估形成微管晶格的纵向和横向微管-微管键的变化来描述 Eg5 微管聚合酶机制。分离的 Eg5 运动结构域促进微管的成核、生长和稳定性;因此,通过两个马达头交联微管不是聚合酶活性所必需的。Eg5 优先结合微管而不是游离的微管,这与优先结合游离微管而不是微管的微管解聚驱动蛋白相反。稳定微管的弯曲构象的秋水仙碱样抑制剂会抑制 Eg5 的结合,这与 Eg5 诱导微管中弯曲到直线的转变的模型一致。结构域交换实验表明,位于核苷酸感应开关 II 结构域附近的家族特异性环 11-螺旋 4 连接对于 Eg5 的聚合酶活性是必需且充分的。因此,我们提出了一种微管聚合酶机制,其中位于正极的 Eg5 促进微管中弯曲到直线的转变,从而增强了侧键的形成,从而促进了微管的生长和稳定性。一个含义是,调节蛋白或小分子抑制剂对 Eg5 运动性质的调节也可能对细胞内微管动力学产生影响。