Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt University, Nashville, Tennessee 37212, United States.
Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, Tennessee 37212, United States.
Nano Lett. 2021 Jun 23;21(12):4921-4927. doi: 10.1021/acs.nanolett.1c00357. Epub 2021 Jun 7.
Low-power trapping of nanoscale objects can be achieved by using the enhanced fields near plasmonic nanoantennas. Unfortunately, in this approach the trap site is limited to the position of the plasmonic hotspots and continuous dynamic manipulation is not feasible. Here, we report a low-frequency electrothermoplasmonic tweezer (LFET) that provides low-power, high-stability and continuous dynamic manipulation of a single nanodiamond. LFET harnesses the combined action of the laser illumination of a plasmonic nanopillar antenna array and low-frequency alternating current (ac) electric field to establish an electrohydrodynamic potential capable of the stable trapping and dynamic manipulation of single nanodiamonds. We experimentally demonstrate the fast transport, trapping, and dynamic manipulation of a single nanodiamond using a low-frequency ac field below 5 kHz and low-laser power of 1 mW. This nanotweezer platform for nanodiamond manipulation holds promise for the scalable assembly of single photon sources for quantum information processing and low noise quantum sensors.
通过使用等离子体纳米天线附近的增强场,可以实现对纳米级物体的低功率捕获。然而,在这种方法中,捕获位置仅限于等离子体热点的位置,并且无法进行连续的动态操作。在这里,我们报告了一种低频电热等离子体镊子(LFET),它可以实现对单个纳米金刚石的低功率、高稳定性和连续动态操作。LFET 利用等离子体纳米柱天线阵列的激光照射和低频交流(ac)电场的联合作用,建立了一个能够稳定捕获和动态操作单个纳米金刚石的电动力学势。我们通过使用低于 5 kHz 的低频交流场和 1 mW 的低激光功率,实验证明了单个纳米金刚石的快速传输、捕获和动态操作。这种用于纳米金刚石操作的纳米镊子平台有望用于可扩展的单光子源组装,用于量子信息处理和低噪声量子传感器。