Hong Ikjun, Hong Chuchuan, Tutanov Oleg S, Massick Clark, Castleberry Mark, Zhang Qin, Jeppesen Dennis K, Higginbotham James N, Franklin Jeffrey L, Vickers Kasey, Coffey Robert J, Ndukaife Justus C
Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States.
Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States.
Nano Lett. 2023 Aug 23;23(16):7500-7507. doi: 10.1021/acs.nanolett.3c02014. Epub 2023 Aug 8.
This study addresses the challenge of trapping nanoscale biological particles using optical tweezers without the photothermal heating effect and the limitation presented by the diffraction limit. Optical tweezers are effective for trapping microscopic biological objects but not for nanoscale specimens due to the diffraction limit. To overcome this, we present an approach that uses optical anapole states in all-dielectric nanoantenna systems on distributed Bragg reflector substrates to generate strong optical gradient force and potential on nanoscale biological objects with negligible temperature rise below 1 K. The anapole antenna condenses the accessible electromagnetic energy to scales as small as 30 nm. Using this approach, we successfully trapped nanosized extracellular vesicles and supermeres (approximately 25 nm in size) using low laser power of only 10.8 mW. This nanoscale optical trapping platform has great potential for single molecule analysis while precluding photothermal degradation.
本研究解决了利用光镊捕获纳米级生物粒子的挑战,避免了光热加热效应以及衍射极限带来的限制。由于衍射极限,光镊对捕获微观生物物体有效,但对纳米级样本则无效。为克服这一问题,我们提出了一种方法,即在分布式布拉格反射器基板上的全介质纳米天线系统中使用光学零模表面态,以在纳米级生物物体上产生强大的光学梯度力和势,且温度升高可忽略不计,低于1K。零模天线将可获取的电磁能量压缩至小至30nm的尺度。利用这种方法,我们仅使用10.8mW的低激光功率就成功捕获了纳米级细胞外囊泡和超聚体(尺寸约为25nm)。这个纳米级光学捕获平台在排除光热降解的同时,对于单分子分析具有巨大潜力。