Suppr超能文献

无规取向偶极子辅助的纳米级细胞外囊泡和颗粒的低功率光镊捕获

Anapole-Assisted Low-Power Optical Trapping of Nanoscale Extracellular Vesicles and Particles.

作者信息

Hong Ikjun, Hong Chuchuan, Tutanov Oleg S, Massick Clark, Castleberry Mark, Zhang Qin, Jeppesen Dennis K, Higginbotham James N, Franklin Jeffrey L, Vickers Kasey, Coffey Robert J, Ndukaife Justus C

机构信息

Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States.

Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States.

出版信息

Nano Lett. 2023 Aug 23;23(16):7500-7507. doi: 10.1021/acs.nanolett.3c02014. Epub 2023 Aug 8.

Abstract

This study addresses the challenge of trapping nanoscale biological particles using optical tweezers without the photothermal heating effect and the limitation presented by the diffraction limit. Optical tweezers are effective for trapping microscopic biological objects but not for nanoscale specimens due to the diffraction limit. To overcome this, we present an approach that uses optical anapole states in all-dielectric nanoantenna systems on distributed Bragg reflector substrates to generate strong optical gradient force and potential on nanoscale biological objects with negligible temperature rise below 1 K. The anapole antenna condenses the accessible electromagnetic energy to scales as small as 30 nm. Using this approach, we successfully trapped nanosized extracellular vesicles and supermeres (approximately 25 nm in size) using low laser power of only 10.8 mW. This nanoscale optical trapping platform has great potential for single molecule analysis while precluding photothermal degradation.

摘要

本研究解决了利用光镊捕获纳米级生物粒子的挑战,避免了光热加热效应以及衍射极限带来的限制。由于衍射极限,光镊对捕获微观生物物体有效,但对纳米级样本则无效。为克服这一问题,我们提出了一种方法,即在分布式布拉格反射器基板上的全介质纳米天线系统中使用光学零模表面态,以在纳米级生物物体上产生强大的光学梯度力和势,且温度升高可忽略不计,低于1K。零模天线将可获取的电磁能量压缩至小至30nm的尺度。利用这种方法,我们仅使用10.8mW的低激光功率就成功捕获了纳米级细胞外囊泡和超聚体(尺寸约为25nm)。这个纳米级光学捕获平台在排除光热降解的同时,对于单分子分析具有巨大潜力。

相似文献

2
Multiplexed Near-Field Optical Trapping Exploiting Anapole States.利用无偶极子态的多路复用近场光镊
ACS Nano. 2023 Sep 12;17(17):16695-16702. doi: 10.1021/acsnano.3c03100. Epub 2023 Aug 21.
7
Optical trapping of nanoparticles.纳米颗粒的光学捕获
J Vis Exp. 2013 Jan 15(71):e4424. doi: 10.3791/4424.
10
Single Photon Source from a Nanoantenna-Trapped Single Quantum Dot.来自纳米天线捕获的单个量子点的单光子源。
Nano Lett. 2021 Aug 25;21(16):7030-7036. doi: 10.1021/acs.nanolett.1c02449. Epub 2021 Aug 16.

引用本文的文献

2
Exomeres and supermeres: Current advances and perspectives.外膜粒和超膜粒:当前进展与展望
Bioact Mater. 2025 Apr 16;50:322-343. doi: 10.1016/j.bioactmat.2025.04.012. eCollection 2025 Aug.
4
Recent Advancements in Nanophotonics for Optofluidics.用于光流体学的纳米光子学的最新进展。
Adv Phys X. 2024;9(1). doi: 10.1080/23746149.2024.2416178. Epub 2024 Oct 22.

本文引用的文献

1
Extracellular vesicles and nanoparticles: emerging complexities.细胞外囊泡和纳米颗粒:不断涌现的复杂性。
Trends Cell Biol. 2023 Aug;33(8):667-681. doi: 10.1016/j.tcb.2023.01.002. Epub 2023 Feb 1.
6
Extracellular miRNAs and Cell-Cell Communication: Problems and Prospects.细胞外 miRNAs 与细胞间通讯:问题与展望。
Trends Biochem Sci. 2021 Aug;46(8):640-651. doi: 10.1016/j.tibs.2021.01.007. Epub 2021 Feb 17.
9
Quo vadis, plasmonic optical tweezers?表面等离子体光镊何去何从?
Light Sci Appl. 2019 Apr 3;8:35. doi: 10.1038/s41377-019-0146-x. eCollection 2019.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验