Blankenship Brian W, Li Jingang, Jones Zachary, Parashar Madhur, Zhao Naichen, Singh Harpreet, Li Runxuan, Arvin Sophia, Sarkar Adrisha, Yang Rundi, Meier Timon, Rho Yoonsoo, Ajoy Ashok, Grigoropoulos Costas P
Laser Thermal Laboratory, Department of Mechanical Engineering, University of California, Berkeley, California 94720, United States.
Department of Chemistry, University of California, Berkeley, California 94720, United States.
Nano Lett. 2024 Aug 7;24(31):9711-9719. doi: 10.1021/acs.nanolett.4c02519. Epub 2024 Jul 25.
Nitrogen-vacancy (NV) centers in nanodiamonds have emerged as a versatile platform for a wide range of applications, including bioimaging, photonics, and quantum sensing. However, the widespread adoption of nanodiamonds in practical applications has been hindered by the challenges associated with patterning them into high-resolution features with sufficient throughput. In this work, we overcome these limitations by introducing a direct laser-writing bubble printing technique that enables the precise fabrication of two-dimensional nanodiamond patterns. The printed nanodiamonds exhibit a high packing density and strong photoluminescence emission, as well as robust optically detected magnetic resonance (ODMR) signals. We further harness the spatially resolved ODMR of the nanodiamond patterns to demonstrate the mapping of two-dimensional temperature gradients using high frame rate widefield lock-in fluorescence imaging. This capability paves the way for integrating nanodiamond-based quantum sensors into practical devices and systems, opening new possibilities for applications involving high-resolution thermal imaging and biosensing.
纳米金刚石中的氮空位(NV)中心已成为一个多功能平台,可用于包括生物成像、光子学和量子传感在内的广泛应用。然而,纳米金刚石在实际应用中的广泛采用受到了一些挑战的阻碍,这些挑战与将它们图案化为具有足够通量的高分辨率特征有关。在这项工作中,我们通过引入一种直接激光写入气泡打印技术克服了这些限制,该技术能够精确制造二维纳米金刚石图案。打印的纳米金刚石表现出高堆积密度和强光致发光发射,以及强大的光探测磁共振(ODMR)信号。我们进一步利用纳米金刚石图案的空间分辨ODMR,通过高帧率宽场锁相荧光成像来展示二维温度梯度的映射。这种能力为将基于纳米金刚石的量子传感器集成到实际设备和系统中铺平了道路,为涉及高分辨率热成像和生物传感的应用开辟了新的可能性。