Suppr超能文献

全景癌症网络紊乱可由整体和局部信号熵揭示。

Pan-cancer network disorders revealed by overall and local signaling entropy.

机构信息

CAS Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China.

University of Chinese Academy of Sciences, Shanghai 200031, China.

出版信息

J Mol Cell Biol. 2021 Dec 6;13(9):622-635. doi: 10.1093/jmcb/mjab031.

Abstract

Tumor development is a process involving loss of the differentiation phenotype and acquisition of stem-like characteristics, which is driven by intracellular rewiring of signaling network. The measurement of network reprogramming and disorder would be challenging due to the complexity and heterogeneity of tumors. Here, we proposed signaling entropy (SR) to assess the degree of tumor network disorder. We calculated SR for 33 tumor types in The Cancer Genome Atlas database based on transcriptomic and proteomic data. The SR of tumors was significantly higher than that of normal samples and was highly correlated with cell stemness, cancer type, tumor grade, and metastasis. We further demonstrated the sensitivity and accuracy of using local SR in prognosis prediction and drug response evaluation. Overall, SR could reveal cancer network disorders related to tumor malignant potency, clinical prognosis, and drug response.

摘要

肿瘤的发生发展是一个涉及分化表型丧失和获得干细胞样特征的过程,这一过程是由细胞内信号网络的重排所驱动的。由于肿瘤的复杂性和异质性,对网络重编程和紊乱的测量具有挑战性。在这里,我们提出信号熵(SR)来评估肿瘤网络紊乱的程度。我们基于转录组和蛋白质组数据,计算了来自癌症基因组图谱数据库的 33 种肿瘤类型的 SR。肿瘤的 SR 明显高于正常样本,并且与细胞干性、癌症类型、肿瘤分级和转移高度相关。我们进一步证明了使用局部 SR 进行预后预测和药物反应评估的敏感性和准确性。总的来说,SR 可以揭示与肿瘤恶性潜能、临床预后和药物反应相关的癌症网络紊乱。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c659/8648393/e666e884e98a/mjab031f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验