IEEE Trans Neural Syst Rehabil Eng. 2021;29:1079-1088. doi: 10.1109/TNSRE.2021.3086843. Epub 2021 Jun 15.
This paper focuses on the design and comparison of different deep neural networks for the real-time prediction of locomotor and transition intentions of one osseointegrated transfemoral amputee using only data from inertial measurement units. The deep neural networks are based on convolutional neural networks, recurrent neural networks, and convolutional recurrent neural networks. The architectures' input are features in both the time domain and the time-frequency domain, which are derived from either one inertial measurement unit (placed above the prosthetic knee) or two inertial measurement units (placed above and below the prosthetic knee). The prediction of eight different locomotion modes (i.e., sitting, standing, level ground walking, stair ascent and descent, ramp ascent and descent, walking on uneven terrain) and the twenty-four transitions among them is investigated. The study shows that a recurrent neural network, realized with four layers of gated recurrent unit networks, achieves (with a 5-fold cross-validation) a mean F1 score of 84.78% and 86.50% using one inertial measurement unit, and 93.06% and 89.99% using two inertial measurement units, with or without sitting, respectively.
本文专注于设计和比较不同的深度神经网络,以仅使用来自惯性测量单元的数据实时预测一位使用骨整合式股骨假肢的患者的运动和过渡意图。这些深度神经网络基于卷积神经网络、循环神经网络和卷积循环神经网络。这些架构的输入是来自一个惯性测量单元(放置在假肢膝盖上方)或两个惯性测量单元(放置在假肢膝盖上方和下方)的时域和时频域特征。研究了八种不同的运动模式(即坐、站、平地行走、上下楼梯、上下斜坡、在不平坦地形上行走)和它们之间的二十四种过渡的预测。研究表明,使用一个惯性测量单元,使用四层门控循环单元网络实现的循环神经网络在 5 倍交叉验证下分别获得 84.78%和 86.50%的平均 F1 分数,使用两个惯性测量单元分别获得 93.06%和 89.99%的平均 F1 分数,无论是否坐着。